
Banner General
Technical Reference Manual

Release 8.10
March 2018

Notices

Notices
© 1993-2018 Ellucian.

Contains confidential and proprietary information of Ellucian and its subsidiaries. Use of these
materials is limited to Ellucian licensees, and is subject to the terms and conditions of one or more
written license agreements between Ellucian and the licensee in question.

In preparing and providing this publication, Ellucian is not rendering legal, accounting, or other
similar professional services. Ellucian makes no claims that an institution's use of this publication
or the software for which it is provided will guarantee compliance with applicable federal or state
laws, rules, or regulations. Each organization should seek legal, accounting, and other similar
professional services from competent providers of the organization's own choosing.

Ellucian
2003 Edmund Halley Drive
Reston, VA 20191
United States of America

©2018 Ellucian. Confidential & Proprietary 2

Contents

Contents

Banner Standards..11
Naming of Banner objects.. 11
Naming of Client-Developed Items... 11

Column names..12
Application tables (base/repeating)..12
Validation tables... 12

Database programming object naming standards.. 13
The dbprocs directory...13

Scripts that create triggers...13
Duplicate names...14
Scripts that create packages, procedures, and functions..14

Line extension products...15
Triggers...15
Packages.. 16
Cursors... 16
User-defined types... 17

Indexes..17
Banner constraint naming convention.. 18

Primary keys... 18
Foreign keys... 18

Define referential integrity constraints referencing the validation tables........................18
Define referential integrity constraints for application hierarchy.................................... 19

Check constraints... 19
Unique constraints.. 20

Data format recommendations..22
Delivered user IDs.. 22

BASELINE and LOCAL User IDs...26
Directory structure... 27
COBOL standards... 31

Rules... 31
Standards.. 33
Style.. 35

C Standards.. 37
Rules... 37
Standards.. 42
Style.. 45

Banner Forms Architecture...47
Introduction.. 47

Classes..47
Attributes... 48
Methods...48
Objects.. 48
Banner...48

©2018 Ellucian. Confidential & Proprietary 3

Contents

The Logical View...49
The Superclass G$_FORM_CLASS.. 49

Methods.. 50
Security methods..50
PRE and POST methods...50
Event methods... 50
KEY methods... 51
Specialized methods.. 51

Subclasses.. 52
Subclass G$_VAL_FORM_CLASS.. 52
Subclass G$_APPL_FORM_CLASS... 52
Subclass G$_INQ_FORM_CLASS.. 53

Inheritance...54
A form as an object..55
Interaction between two or more forms... 56

Display bubble help: attribute (Y/N)...56
Display form name on title bar: attributes (Y/N).. 56
Display release number on title bar: attributes (Y/N)...56
Display database instance on title bar: attributes (Y/N).. 57

Key block.. 57
The attributes of G$_KEY_BLOCK_CLASS.. 57
The methods of G$_KEY_BLOCK_CLASS... 58
The class G$_KEY_BLOCK_CLASS... 59
Interaction between the key block and other blocks..60
The G$_FS_CANVAS_CLASS Class...61
The G$_FS_WINDOW_CLASS Class..61
Items..62
Methods...63
The G$_DESC_CLASS Class..63
Methods...64
The Class G$_ID_CLASS.. 64
Methods...65
The Class G$_NAME_CLASS... 66
Methods...67
The Class G$_FF_NAME_CLASS... 67
The G$_DATE_CLASS Class.. 67
Methods...68
The G$_DATETIME_CLASS Class..68
The G$_ICON_BTN_CLASS Class..68
Methods...69
The G$_FLASHLITE_BTN_CLASS Class..69

Implementation View... 69
GOQOLIB..69
Fundamental methods of G$_FORM_CLASS..70
Pre-form trigger...70
Post-form trigger... 70
Pre-block trigger..71
Post-block trigger..72
When-new-block-instance trigger... 73
LOAD_FORM_HEADER trigger... 73
When-new-record-instance trigger..74

©2018 Ellucian. Confidential & Proprietary 4

Contents

KEY-CLRFRM trigger... 74
KEY-NXTBLK.. 75
KEY-PREVBLK... 75
KEY-EXIT.. 76
B2K_EXIT_FORM... 76
KEY-NXTKEY..79
Key blocks...79

Case view..79
Non-inquiry forms without a key block... 80
Non-inquiry form with a key block..80
Inquiry forms with and without a key block..81
ID and name items...81
Code and description items..82
Dates... 83
Iconic button..83
Check box, radio group.. 84
Menu bar options..84

Disabling an option.. 84
Enabling an option... 84
Changing the label text of an option... 84
Reading the label text of an option... 84

Standards for forms.. 85
Naming conventions... 85
Visual cues..86

Modification ID..86
Instance name..86
Guideline...87
Helpful hints..88

Blocks..88
Scroll bars...88
Navigation... 88
Text items..89
Check boxes, radio groups, pull down lists... 90

Check boxes...90
Radio groups.. 90
Check boxes/radio group tags... 90
Pull-down lists.. 90

Buttons.. 91
Button properties.. 91
LOV/LOV buttons... 91

Menus..92
Helpful hints..93

Miscellaneous notes.. 94
Create custom Banner forms..94

Guidelines for Updating Forms for Banner 8.0.. 95
Create an 8.0 Audit Trail Entry..95
Modify the load_current_release trigger.. 95
Check WHEN-NEW-RECORD-INSTANCE..95
Add Support for Tooltips.. 95
Observe Standards for Field Lengths..95

©2018 Ellucian. Confidential & Proprietary 5

Contents

Online Internal Processing..97
Global variables...97

General global variables...98
How PIDMs and IDs are generated... 98

Fill gaps in PIDM or ID number series.. 99
The SOBSEQN method used in release 6.x..100

Banner libraries... 100
GOQOLIB..100
GOQRPLS...100
GOQCLIB.. 110
Workflow Banner Adapter Library (GOQWFLW)..110

Oracle Advanced Queuing..111
Large Object storage.. 112

Considerations for building custom applications.. 112
Store internal LOBs..112
Store BFILEs.. 112
Choose between internal LOBs and BFILEs... 113

Upgrade Assistance... 115
Upgrade Modification History/Maintenance (GUASMOD).. 115

Stage Modification History..116
Stage Modification Maintenance Header/Detail... 117

Header.. 117
Detail...118

Stage Modification History Details Window..118

Banner Integration.. 120
Common tables... 120
Common Objects...124
Ethnicity codes in Banner... 131

Ethnic distinctions... 131
New race and ethnicity categories... 131

New race code forms...132
Nonresident aliens.. 132

Student system...132
Human Resources system...132

Reports and Processes.. 134
Enhanced Oracle*Reports...134

Enhanced Sscurity for Oracle*Reports...135
Set up Banner to run the enhanced Oracle*Reports... 135
Set up default values for parameters 71-77...136

Run Custom Oracle Reports with Default Parameters.. 138
User preferences for Oracle Reports output.. 138

Changes to Support Enhanced Oracle Reports... 141
Student, Finance, and Accounts Receivable Reports..141
Parameters 71-77... 142

©2018 Ellucian. Confidential & Proprietary 6

Contents

7.1 Changes for forms that call Oracle Reports.. 143
Description of changes.. 143

7.1 Changes for Oracle Reports RDF Files...144
Description of changes.. 144

General PL/SQL Oracle*Reports Library (GOQOREP)... 148
Release 7.0 changes... 148
Release 7.1 changes... 148
Release 7.3 changes... 148
The RUN_REPORT_OBJECT... 149
The optional Report Value Window... 149
Report Forms Object Library (GOQRLIB)..150

Dynamic Procedure Library (GOQRPLS)...150
Reports in Banner General...151

Perl Reports..151
Report and Process Attributes... 152

Trace mode (debug) for General COBOL programs.. 153
SQL*Plus scripts... 155
Sleep/wake methods... 163

Method One.. 163
UNIX... 163
OpenVMS... 164
Windows... 164

Method Two.. 164
Banner Student.. 164
Banner Accounts Receivable...165

Print the saved output.. 166
Operating systems without sleep/wake-up commands.. 167
NOSLEEP Triggers...167
New database package.. 167

GOKNOSL.. 167
Changed database packages...168

GSPCRPU.. 168
GB_ADVQ_UTIL...168

Changed Job Submission related database objects.. 168
gjajobs.shl...168
Change in the NOSLEEP userid password...168

Job Submission... 169
Jobs submitted from GJAPCTL..169

Reset job submission sequence number...170
Jobs submitted from application forms...171
The GUQINTF form.. 171
UNIX..173

gjajobs.shl...173
umask value for gjajobs.shl... 175

Windows platform... 176
Batch Java scripts.. 177
Job Submission processing..178

Looking up the user... 178
Specifying a home directory.. 179
Using Job Submission... 180

GURJOBS... 181

©2018 Ellucian. Confidential & Proprietary 7

Contents

Processing with DBMS_PIPE.. 181
Processing with DBMS_PIPE.. 182
IDLEWAIT timeout configuration modification for GURJOBS.pc................................. 182

Manage Job Submission on Windows... 183
Starting Job Submission for your default database...183

Prerequisites.. 183
Starting Job Submission for multiple databases..184

Manage Job Submission on VMS..184
Starting Job Submission for your default database...184

LOGIN.com.. 185
GURJOBS.COM...185
START_GURJOBS.COM... 185

Starting Job Submission for multiple databases..185
Manage Job Submission on UNIX... 186

Starting Job Submission for your default database...186
Starting Job Submission for multiple databases..188

Manage Job Submission on non-database server...189
Typical directory structure.. 189
Executing Banner Pro*C or Pro*Cobol programs..190

View Job Submission output.. 190
Manage the printing of saved output using the Banner Print App..................................... 190
Process PL/SQL packages with JOBSUB... 191

Example..192
Create a job to run a PL/SQL package.procedure thru jobssub..................................193

Data extract process... 195
Data extract tables..196

Purge data extract records with gdeloutd.sql.. 197
Environment variable BAN_DATA_EXTRACT_PAD_COLUMNS................................ 197

APIs..198
APIs used in Banner General...198
APIs used in Banner General with Student forms and tables.. 203
APIs for internal Banner operations..206

Interfaces...211
Interfaces with external user systems.. 211

GOKSVEX package..211
GORSVBH table... 212
GOTSVBT table..212
GURFEED table..212
GURAPAY table.. 212

Interfaces within Banner... 212
GURFEED table..212
GURAPAY table.. 212

Generate and Compile Forms.. 213
Mass form generation scripts..213
COBOL compiling..214

©2018 Ellucian. Confidential & Proprietary 8

Contents

Compile COBOL under UNIX...214
Create a Pro*COBOL makefile.. 214
Example buildcob session..215
Reduce executable sizes... 216

Compile COBOL under OpenVMS...217
Initial installation... 217

COBOL Compiling during Banner installation.. 218
Banner product COBOL compile procedures.. 218
UNIX... 218
OpenVMS... 219
Windows... 219

C compiling..219
Compile C under UNIX...220

Create a Pro*C makefile.. 220
Example buildmk session...221
Use sctproc.mk...222

Added switch for sctproc.mk file..222
Reducie executable sizes.. 223

Compile C under OpenVMS...223
Initial installation... 224

C Compiling during Banner installation..224
Banner C compile procedures... 224
UNIX... 224
OpenVMS... 225
Windows... 225

Desktop Tools... 227
Desktop Tools overview.. 227

Minimum system requirements...227
Desktop Tools configuration... 228

Unpack Desktop Tools application files... 228
Update the configuration file.. 229
Distribute files for client PC installation... 230

Uninstall Desktop Tools configuration.. 230
Client PC installation.. 230

Uninstall Banner Desktop Tools from a client PC..232
Installation of Desktop Tools in other environments...232

Macintosh... 232
Citrix..232

Forms.. 233
Desktop Tools Add – In Application Form (GOADADD).. 233
Desktop Tools – Wizard Steps Setup Application Form (GOADSTE)..........................233
Desktop Tools – Step Property Values Rule Form (GORDPRP)................................. 233
Desktop Tools – User Security Rule Form (GORDSEC)... 233
Desktop Tools – Step Type Properties Rule Form (GORDSTP)..................................234
Desktop Tools – Add-In Validation Form (GTVDADD)...234
Desktop Tools – Step Property Validation Form (GTVDPRP)..................................... 234
Desktop Tools – Step Type Validation Form (GTVDSTP)... 234

Tables.. 234

©2018 Ellucian. Confidential & Proprietary 9

Contents

System-Required Data...236
System-Required Tables... 236

Tables Owned by BANSECR... 236
Large tables.. 237
Other Tables..237

System-Required Rows...238
GOBFEOB...250
GORCCOL.. 253
GORCRUL.. 254
GORCTAB...256
GORSSQL...280

Troubleshooting..327
SQL Trace... 327

Start a SQL Trace in GUAINIT.. 328
Capture runtime statistics... 328

©2018 Ellucian. Confidential & Proprietary 10

Banner Standards

Banner Standards
Banner Standards

This chapter discusses the naming standards in Banner.

Naming of Banner objects

Banner form, report, job, and table names have a 7-character structure. The first and second
characters identify the system and module, the third character identifies the type of object, and the
four remaining characters are used as a unique identifier for the object. These naming standards,
and the meanings of each letter in the first, second, and third positions, are detailed in Chapter 1,
“Overview,” of the Banner Getting Started Guide.

For naming standards of APIs, see Chapter 1, “Overview,” of the Banner API Developer Guide.

Naming of Client-Developed Items

The letters W, Y, and Z are reserved for use in Positions 1 and 2 of the names of all client-developed
applications, forms, reports, tables and modules.

For client-developed new applications built to coexist with Banner applications, W, Y, or Z should be
used as the first character.

For client-developed forms or modules used within a Banner application, the system identifier is
used as the first character (for example, G for General), and W, Y, or Z should be used as the second
character.

Note: After you create a custom form, be sure to access the Object Maintenance Form
(GUAOBJS) and associate it with a System indicator code, (for example, A for Advancement, G
for General, F for Finance, etc.) These codes are defined on the System Indicator Validation Form
(GTVSYSI). If you want to classify your form as a custom form rather than associating it with a
Banner system, you can set up W, Y, and Z on GTVSYSI and use that code on GUAOBJS. If you set
up a code other than W, Y or Z on GTVSYSI and use it on GUAOBJS, it is possible that Banner may
not display your custom form on the appropriate menus.

For client-developed reports used within a Banner application, the system identifier must be used
as the first character (for example, G for General and so forth), and W, Y, or Z should be used as the
second character.

For client-developed tables used within a Banner application, the system identifier must be used as
the first character (for example, G for General and so forth), and W, Y, or Z should be used as the
second character.

For client-developed programs used within a Banner application, the system identifier must be used
as the first character (for example, G for General and so forth), and W, Y, or Z should be used as the
second character.

©2018 Ellucian. Confidential & Proprietary 11

Banner Standards

Column names

Column names start with the seven-character table name, followed by an underscore and an
expression that uniquely identifies the column within the table.

For example:

GJBJOBS_NAME

APBCONS_PIDM

Application tables (base/repeating)

Column names that correspond to a validation table must contain the seven-character application
table name followed by an underscore, the four-character validation table identifier, an underscore,
and CODE

For example:

GJBJOBS_PRNT_CODE

APRCATG_DONR_CODE

If multiple columns are needed for the same validation table identifier, column names are made
unique by appending a number or a unique name to the end of the name of the column. For
example:

GURFEED_PAYT_CODE

GURFEED_PAYT_CODE_TRANSCRIPT

APBCONS_ATYP_CODE_PREF

APBCONS_ATYP_CODE_CM

The name of the last activity date column begins with the seven-character table name followed by
an underscore and ACTIVITY_DATE. For example:

GTVLETR_ACTIVITY_DATE

APBCONS_ACTIVITY_DATE

The name of the updating user ID column begins with the seven-character table name followed by
an underscore and USER_ID. For example:

GURAPAY_USER_ID

Validation tables

The validation table and corresponding form have the same name. Both start with GTV followed by a
unique four-character identifier.

For example:

GTVCALL

©2018 Ellucian. Confidential & Proprietary 12

Banner Standards

The name of the key column begins with the seven-character table name followed by an underscore
and CODE. For example:

GTVCALL_CODE

The name of the description column begins with the seven-character table name followed by an
underscore and DESC. For example:

GTVCALL_DESC

The name of columns that are used as indicators begins with the seven-character table name and
end with an underscore and IND. For example:

GTVCALL_DUPL_IND

The name of the last activity date column begins with the seven-character table name followed by
an underscore and ACTIVITY_DATE. For example:

GTVCALL_ACTIVITY_DATE

A unique index is created for the validation table using the key columns to prevent duplicates from
being added to the system.

Database programming object naming standards

This section discusses the naming standards for database programming objects.

The dbprocs directory

The dbprocs directory, found under each product directory, stores the database programming
object create scripts (for triggers, packages, etc.). This directory also stores Banner APIs (see
Chapter 7, “APIs”).

Scripts that create triggers

All scripts in the dbprocs directory that pertain to the creation of database triggers are named
using the following standard.

abcdddde.sql

a= Product identifier (S)tudent, (P)ayroll etc.

b= Module (E)mployee, (B)udget etc.

c= (T)rigger

dddd = Table identifier such as PERS, IDEN, EMPL etc.

e= Number 0 through 9, letters a through z

Note: This becomes aabcddde.sql for those products that have a double character identifier.
They sacrifice one of the table identifier letters: dddd becomes ddd.

©2018 Ellucian. Confidential & Proprietary 13

Banner Standards

The script has the same name as the table except that the third position is replaced with the letter
t to denote a trigger. Each script ends with a number so the programming logic can have multiple
triggers for the same table. If there are more than 10 triggers for a table, each script ends in a letter.
For example:

sptpers0.sql - First database trigger for the SPBPERS table

sptiden7.sql - Eighth database trigger for the SPRIDEN table

petemplc.sql - Thirteenth database trigger for the PEBEMPL table

Duplicate names

The standards for script names could potentially lead to duplicate names from time to time.

For example, if a trigger is created for both the NBBJOBS table and the NBRJOBS table you end
up with two create scripts that should be named nbtjobs0.sql. This will not occur often, but when it
does a small modification to one or both of the script names is suggested to make them unique. For
example, nbtjobs0.sql for the NBBJOBS trigger and nbtjob20.sql for the NBRJOBS trigger.

Scripts that create packages, procedures, and functions

All scripts in the dbprocs directory that pertain to the creation of database objects that can be
packages, procedures, and functions are named using the following standard.

abcdddd.sql

a = Product identifier (S)tudent, (P)ayroll, etc.

b = Module (E)mployee, (B)udget, etc.

c = Pac(K)age, (P)rocedure, (F)unction

dddd = Four-character mnemonic which uniquely identifies the object

Note: If the product identifier is two characters, the standard becomes aabcddd.sql.

The following table lists examples of this naming standard.

gefcmnt.sql (G)eneral (E)vent (F)unction for (CMNT)
comments

shkgpac.sql (S)tudent Academic (H)istory Pac(K)age for
(G)rade (P)oint (A)verage (C)alculation.

nbkencc.sql Positio(N) Control (B)udget Pac(K)age for
(Enc)umbrance (C)alculation.

noforgc.sql Positio(N) Control (O)verall (F)unction for (Org)
(C)harting.

The same 7-character name will be used to name the package object within the database.

©2018 Ellucian. Confidential & Proprietary 14

Banner Standards

Line extension products

Line extension products use zzacbddd (the c before the b is intentional).

where:

zz= Line extension product.

a= Baseline product identifier.

c= Pac(K)age, (P)rocedure, (F)unction

b= Module name.ddd= Table identifier

For example:

hwpkeinf

hw = Self-Service line extension product

p =Human Resources baseline product

k = Pac(K)age

e = (E)mployee module.

inf = (Inf)ormation

At the discretion of the programmer/project leader, the specification for the package may or may not,
be separated from the body. They are typically separate unless they are very small packages. When
split, the two scripts would be named the same except for a 1 appended to the body script name.

For example, shkgpac.sql would be the script to create the specification and shkgpac1.sql
would be the script to create the body. You can use all eight characters for the specification script,
for example, sckgpac0.sql would be the script to create the specification and shkgpac1.sql
would be the script to create the body.

Triggers

Database trigger objects within the database are named as follows.

at_abcdddd_xxxxxxxxxxxxxxxxxx (a total of 29 characters)

where:

a = Product identifier (S)tudent, (P)ayroll etc.

t = (T)rigger

abcdddd = Table name

xxxxxxxxxx.... = Meaningful trigger name up to 18 characters in length

For example:

gt_spriden_name_compress

pt_pebempl_audit_trail_upd

©2018 Ellucian. Confidential & Proprietary 15

Banner Standards

Packages

Packages should contain their functions, procedures, etc. in alphabetical order by object name.

Procedures and functions can be created as stand-alone objects or contained within a package.
There are a number of factors that contribute to this decision; therefore, it is determined by the
programmer/technical project leader. The database objects that are procedures or functions will be
named as follows:

p_xxxxxxxxxxxxxxxxxxxxxxxxxxx (a total of 29 characters)

f_xxxxxxxxxxxxxxxxxxxxxxxxxxx

where

p = (P)rocedure

f = (F)unction

xxxxxxxxxx.... = Meaningful name up to 27 characters in length

For example:

p_grade_point_avg_calc

f_fund_override

p_salary_enc_calc

f_check_for_event_comments

For Oracle to execute a SQL statement that calls a packaged function, you must assert its purity
level by coding the pragma RESTRICT_REFERENCES directive in the package specification. The
pragma RESTRICT_REFERENCES directive is not required to execute a packaged function in
procedural statements. Please refer to the Oracle 9i Application Developer’s Guide - Fundamentals,
Release 2 for more information.

Although, based on this standard, the names of functions and procedures can be up to 29
characters in length, it is strongly recommended that the names be kept shorter where possible.
Many products outside of Banner have size limitations for these names; therefore, a shorter name is
safer.

Cursors

Cursors are named as follows.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxC (a total of 29 characters)

Where:

C = (C)ursor

xxxxxxxxxx.... = Meaningful name up to 28 characters in length. It is strongly recommended that
the C be preceded by an underscore.

For example:

ytd_benefit_values_C

©2018 Ellucian. Confidential & Proprietary 16

Banner Standards

students_who_are_employees_C

delinquent_accounts_C

If the cursor returns all the columns for one table it is recommended that the cursor name =
tablename_C (i.e., Spbpers_C, Stvterm_C).

User-defined types

User-defined types are named as follows in the database.

a_xxxxxxxxxxxx[_nt] (up to 29 characters)

Where:

a = product identifier

xxxxxxxx... = mnemonic that uniquely identifies the object

_nt literal is added to the end if the object is a nested type

For example:

g_idname_search

g_idname_search_nt

A synonym must be created for all packages for the objects within those
packages to be accessed by all Oracle Tools. For example, you cannot invoke
baninst1.nbkencc.p_count_days_fisc_yr from Oracle Forms because of the two periods
(i.e., owner.package_name.procedure_name). A synonym must be created for the package by
stripping off the BANINST1 owner. In our example we end up with a synonym named nbkencc and
so we can then invoke the procedure by referencing it as nbkencc.p_count_days_fisc_yr.
Using the synonym to mask the BANINST1 owner in this fashion is also consistent with how we
handle the table names.

A synonym must be created for all packages. The synonym name is the same as the package
except that the BANINST1 owner designation is stripped from the front.

For example:

Package name: baninst1.nbkencc

Synonym: nbkencc

Indexes

The unique index on each table is named as follows.

7-character table name_key_index

Each additional index is numbered numerically, starting with 2 after indexes, as follows:

7-character table name_key_index2

7-character table name_key_index3

etc.

©2018 Ellucian. Confidential & Proprietary 17

Banner Standards

Banner constraint naming convention

The following four constraint types are available in Oracle databases.

1. Primary key constraints — to enforce unique, non-null keys
2. Foreign key constraints — to ensure children rows are not updated/inserted if parent rows do

not exist, and to prevent the deletion of parent rows if children rows do exist
3. Check constraints — to enforce integrity issues specified by the check condition
4. Unique constraints — designates a column or a combination of columns as a unique key

A constraint name must be unique for a given owner.

Note: Some foreign key constraints are delivered disabled to remove the negative performance
impact of the additional indexes. They are for documentation purposes only.

Primary keys

Primary keys must be defined in the following fashion.

“PK_” + ppppppp

where PK for Primary Key,

ppppppp = primary key table name

Example: The primary key for STVTERM should be named PK_STVTERM.

Foreign keys

Foreign keys can be defined in the following two situations.

• Defining referential integrity constraints referencing the validation tables
• Defining referential integrity constraints for application hierarchy

Define referential integrity constraints referencing the validation tables

Foreign keys in this category should be defined as follows.

“FK” + n + “_” + fffffff + “_INV_” + ppppppp + “_CODE”

where FK for Foreign Key

n = an one-up number to distinguish potential duplicate foreign key
 names in a given table
fffffff = foreign key table name

©2018 Ellucian. Confidential & Proprietary 18

Banner Standards

ppppppp = primary key table name

Example: The foreign key name for column SCBCDEP_TERM_CODE_START should be
FK1_SCBCDEP_INV_STVTERM_CODE.

The foreign key name for column SCBCDEP_TERM_CODE_END should be
FK2_SCBCDEP_INV_STVTERM_CODE.

Define referential integrity constraints for application hierarchy

Foreign keys in this category should be defined in the following fashion.

“FK” + n + “_” + fffffff + “_INV_” + ppppppp + “_KEY”
where FK = Foreign Key
n = an one-up number to distinguish potential duplicate
foreign key names in a given table
fffffff = foreign key table name
ppppppp = primary key table name

Check constraints

The following two possible standards are recommended.

1. “CC” + n + “_” + ccccccc

where CC for Check Constraint
n = an one-up number to distinguish potential duplicate check
 constraint key names in a given table
ccccccc = column name

Example: The check constraint name for checking the range of SCRSCHD_WORKLOAD would be
CC1_SCRSCHD_WORKLOAD.

2. “CC” + x + “_” + ttttttt + “_” + mmmmmmm

where CC = Check Constraint
x = a checking category code

For example, R for range checking, V for value checking, etc.

ttttttt = table name
mmmmmmm = message

Example: The check constraint name for checking the range of SCRSCHD_WORKLOAD would be
CCR_SCRSCHD_outside_0_and_999.

©2018 Ellucian. Confidential & Proprietary 19

Banner Standards

Unique constraints

Unique constraints must be defined in the following fashion.

“uk” +n+_ppppppp +_+ ddddddd
where UK for unique constraint

n= an one-up number to distinguish potential duplicate unique
 constraints in a given table.
ddddddd= descriptive name

Example 1

To illustrate the situation where referential integrity is to be defined for the application hierarchy, let
us assume there are three parent-child tables in the system:

XXXXXXX, YYYYYYY and ZZZZZZZ.
12:14:40 SQL> desc XXXXXXX;
Name Null? Type
------------------------------- -------- ----

 A CHAR(1)
12:14:47 SQL> desc YYYYYYY;
Name Null? Type

------------------------------- -------- ----

 A CHAR(1)
 B CHAR(1)
12:14:51 SQL> desc ZZZZZZZ;
Name Null? Type

------------------------------- -------- ----

 A CHAR(1)
 B CHAR(1)
 C CHAR(1)

Table YYYYYYY is the child of table XXXXXXX and table ZZZZZZZ is the child of table YYYYYYY.

The following statement defines primary key for table XXXXXXX to enforce a unique, not null value:

12:14:56 SQL> alter table XXXXXXX
12:15:03 2 add constraint PK_XXXXXXX
12:15:12 3 primary key (A);

©2018 Ellucian. Confidential & Proprietary 20

Banner Standards

Table altered.

The following statement defines foreign key for table YYYYYYY referencing the primary key of table
XXXXXXX to ensure the value of A exists in XXXXXX before allowing inserts/updates to YYYYYY.
Deletes of A from XXXXXX only when the value of A does not exist in YYYYYY:

12:15:23 SQL> alter table YYYYYYY
12:15:28 2 add constraint FK1_YYYYYYY_INV_XXXXXXX_KEY
12:15:43 3 foreign key (A)
12:15:51 4 references XXXXXXX (A);
Table altered.

The following statement defines primary key for table YYYYYYY:

12:16:12 SQL> alter table YYYYYYY
12:16:18 2 add constraint PK_YYYYYYY
12:16:26 3 primary key (A, B);
Table altered.

The following statement defines foreign key for table ZZZZZZZ referencing the primary key of table
YYYYYYY:

12:16:38 SQL> alter table ZZZZZZZ
12:16:43 2 add constraint FK1_ZZZZZZZ_INV_YYYYYYY_KEY
12:16:57 3 foreign key (A, B)
12:17:09 4 references YYYYYYY (A, B);
Table altered.

Example 2

Using the sample defined above, the following error messages are generated when constraints are
violated:

The following statement inserted a row into table XXXXXXX successfully:

12:18:03 SQL> insert into XXXXXXX values ('1');
1 row created.

The following statement failed the PK_XXXXXXX primary key constraint, because a primary key must
have unique value:

12:18:14 SQL> insert into XXXXXXX values ('1');
insert into XXXXXXX values ('1')
*
ERROR at line 1:
ORA-00001: unique constraint (SATURN.PK_XXXXXXX) violated

©2018 Ellucian. Confidential & Proprietary 21

Banner Standards

The following statement passed FK1_YYYYYYY_INV_XXXXXXX_KEY constraint checking and
added a row into table YYYYYYY;

12:18:26 SQL> insert into YYYYYYY values ('1', '1');
1 row created.

The following statement caused foreign key violation, because there is not a primary key value ('2',
'2') in table YYYYYYY yet:

12:18:53 SQL> insert into ZZZZZZZ values ('2', '2', '1');
insert into ZZZZZZZ values ('2', '2', '1')
*
ERROR at line 1:
ORA-02291: integrity constraint (SATURN.FK1_ZZZZZZZ_INV_YYYYYYY_KEY)
 violated - parent key not found

Data format recommendations

To ensure consistent information throughout your Banner system, data should be entered in a
standard way. See Chapter 3, “Getting Around Banner, “ in the Banner Getting Started Guide for
recommendations on the format of IDs, names, addresses, dates, and the use of special characters.

Delivered user IDs

Below is a list of the user IDs that are delivered with Banner.

Note: Some of the IDs are used with systems that are no longer part of the Banner suite. They will
be made obsolete in a future release.

The following are sample user accounts for role-level security, etc.

USR IDs Description

ADISUSR Sample user account for role-level security, etc.,
for Advancement.

BAN_SS_USER This user is used for pooled database
connections of the Banner 9 (Self-Service) web
application.

FAISUSR Sample user account for Financial Aid.

FIMSUSR Sample user account for Finance.

FLEXREG_USER The database uses this user for all transactions
created by Flexible Registration process.

©2018 Ellucian. Confidential & Proprietary 22

Banner Standards

USR IDs Description

FLEXUSR jdbc.user identified in the efc.ear deployment.

FTAEUSR User account used for Travel and Expense
Management.

HRISUSR Sample user account for Human Resources.

INFMGR Kiosk Banner product owner.

LCBMGR User account used for Banner Luminis
Channels.

LIMSUSR Obsolete.

SAISUSR Sample user account for Student.

The following IDs own sample and seed data in system:

PRD IDs Description

ADISPRD Sample and seed data owner for Advancement.

FAISPRD Sample and seed data owner for Financial Aid.

FIMSPRD Sample and seed data owner for Finance.

GENLPRD Sample and seed data owner for General.

HRISPRD Sample and seed data owner for Human
Resources.

LIMSPRD Obsolete.

MICRPRD Obsolete.

POSNPRD Sample and seed data owner for Position
Control.

SAISPRD Sample and seed data owner for Student.

TAISPRD Sample and seed data owner for Accounts
Receivable.

The following are schema, object owners, etc.:

Other IDs Description

ADISDAT Advancement data user.

ALUMNI Advancement schema owner.

BANIMGR Banner Document Management Suite schema
owner.

©2018 Ellucian. Confidential & Proprietary 23

Banner Standards

Other IDs Description

BANINST1 Owner of most product packages, functions and
procedures.

BANJSPROXY This is the Oracle*Wallet proxy user account
used for Banner Job Submission.

BANPROXY User ID for Connection pooling to enable one
user to authenticate as BANPROXY to share
sessions instead of creating new ones.

BANSECR Security schema owner.

BANSSO User ID and schema owner for Single Sign-on.

BASELINE Special user for certain delivered data.

The BASELINE ID is not delivered.

BPISMGR OBSOLETE – Property Tax schema owner.

BPISPRD OBSOLETE – Sample and Seed Data owner for
Property Tax.

BPISUSR OBSOLETE – Sample User for Property Tax.

BSACMGR Banner Student Aid (Canada) schema owner.

BSACUSR Sample user for Banner Student Aid (Canada).

BWAMGR Advancement Self-Service schema owner.

BWFMGR Finance Self-Service schema owner.

BWGMGR Web General schema owner.

BWLMGR Faculty Self-Service schema owner.

BWPMGR Employee Self-Service schema owner.

BWRMGR Financial Aid Self Service schema owner.

BWSMGR Student Self-Service schema owner.

CASCADEU Cascade user used by banner-ssb-ws
application.

CIMSMGR OBSOLETE – Courts schema owner.

CIMSPRD OBSOLETE – Sample and Seed Data owner for
Courts.

CIMSUSR OBSOLETE – Sample User for Courts.

DBEU_OWNER User account used for the installation and
administration of the Database Extension Utility
(DBEU).

DCRSMGR OBSOLETE – Cash Receipts schema owner.

©2018 Ellucian. Confidential & Proprietary 24

Banner Standards

Other IDs Description

DCRSPRD OBSOLETE – Sample and Seed Data owner for
Cash Receipts.

DCRSUSR OBSOLETE – Sample User for Cash Receipts.

EPRINT E-print schema owner.

EWQSMGR OBSOLETE – Electronic Work Queue schema
owner.

EWQSUSR OBSOLETE – Sample User for Electronic Work
Queue.

FAISDAT Financial Aid data user.

FAISMGR Financial Aid schema owner.

FIMSARC Finance archive user.

FIMSDAT Finance data user.

FIMSMGR Finance schema owner.

FLEXREG Banner Flexible Registration schema owner.

GENERAL General schema owner.

HRISDAT Human Resources data user.

ICMGR Integration components schema owner.

INFMGR Kiosk Banner product owner.

INTEGMGR Default Oracle ID for Banner Channels.

LIMSARC OBSOLETE – Occupational Tax and License
archive user.

LIMSMGR OBSOLETE – Occupational Tax and License
schema owner.

MICROFA Obsolete.

MICRPRD Obsolete.

MUTREP Mass Data Update Utility schema owner – see
also PRGNREP.

NLSUSR Integration Manager schema owner.

NOSLEEP Used by NOSLEEP triggers to get runtime
parameters.

PAYROLL Payroll schema owner.

POSNCTL Position Control schema owner.

PRGNREP Process Engine schema owner – see also
MUTREP.

©2018 Ellucian. Confidential & Proprietary 25

Banner Standards

Other IDs Description

SAISDAT Student data owner.

SATURN Student schema owner.

STREAMSADMIN User account used for the administration of
Streams processes.

TAISMGR Accounts Receivable schema owner.

UIMSMGR OBSOLETE – Utilities Customer Information
System schema owner.

UIMSPRD OBSOLETE – Sample and Seed Data owner for
Utilities Customer Information System.

UIMSUSR OBSOLETE – Sample User for Utilities
Customer Information System.

VRSMGR Voice Response Student and Financial Aid
schema owner.

WFAUTO Automated activities for a Workflow account.

WFEVENT Event Queue Manager for a Workflow account.

WFQUERY Query-only Workflow account.

WTAILOR Web Tailor schema owner.

XRISMGR OBSOLETE – Records Indexing schema owner.

XRISPRD OBSOLETE – Sample and Seed Data owner for
Records Indexing.

XRISUSR OBSOLETE – Sample User for Records
Indexing.

To generate a list of these user IDs in Oracle, enter the following command:

select username from dba_users order by username;

For security purposes, the schema owners and BANINST1 user accounts can be locked or have
their passwords changed to prevent anyone from using these accounts during regular processing.

Note: You may want to set or review the setting on the User ID Restrictions section on the
GSASECR form to help ensure the Banner security of these users.

BASELINE and LOCAL User IDs

Many General tables have been assigned a user ID of either BASELINE or LOCAL. The reason for
this user ID column is simple: a way was needed to clearly identify deliverable rows versus your

©2018 Ellucian. Confidential & Proprietary 26

Banner Standards

custom rows so that when we re-deliver software in subsequent versions we do not interfere with
your custom rows.

BASELINE rows should not be changed without careful consideration of your future need to
maintain these rows. If you find it necessary to change BASELINE rows, you can create a user with
the name of BASELINE and the class of General objects. This BASELINE user would then be able
to log into Banner and make changes to the BASELINE rows.

Places where you will find this most helpful are in initial set up of the standard toolbar icons and
when you need to make changes to the options in the navigation frame.

Directory structure

The directory structure.

ADMIN

OPSYS Contains COBOL make files for platform (UNIX,
AIX, DGUX, SUNOS, etc.)

ALUMNI (Banner Advancement)

C Pro*C and C source files

COM DCL command files (VMS only)

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions, and triggers

FORMS Oracle*Forms .fmb, .fmx, .pll, and .lib files

INSTALL .SCTDMP file used during the initial install
(renamed to .DMP during install)

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

ARSYS (Banner Accounts Receivable)

C Pro*C and C source files

COB Pro*COBOL files (UNIX only)

COBPCO Pro*COBOL files (VMS only)

COM DCL command files (VMS only)

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions and triggers

©2018 Ellucian. Confidential & Proprietary 27

Banner Standards

ARSYS (Banner Accounts Receivable)

FORMS Oracle*Forms .fmb, .fmx, .pll and .lib files,
Oracle Reports

INSTALL .SCTDMP file used during initial install (renamed
to .DMP during install)

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

COMMON

Objects shared by all products (see Chapter 5)

FINAID (Banner Financial Aid)

C Pro*C and C source files

COB Pro*COBOL files (UNIX only)

COBPCO Pro*COBOL files (VMS only)

COM DCL command files (VMS only)

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions and triggers

FORMS Oracle*Forms .fmb, .fmx, .pll and .lib files

INSTALL .SCTDMP file used during initial install (renamed
to .DMP during install)

JAVA Files that contain Java code

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

FINANCE (Banner Finance)

C Pro*C and C source files

COM DCL command files (VMS only)

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions and triggers

DESKTOP/EDI EDI Desktop Application

FORMS Oracle*Forms .fmb, .fmx, .pll and .lib files,
Oracle Reports

©2018 Ellucian. Confidential & Proprietary 28

Banner Standards

FINANCE (Banner Finance)

INSTALL .SCTDMP file used during initial install (renamed
to .DMP during install)

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

GENERAL (Banner General)

C Pro*C and C source files, C compile procedures,
EXEC INCLUDE files (source files)

COB COBOL copybooks for all products (UNIX also
includes General Pro*COBOL & .gnt files)

COB/LIB Links to copybooks with .cob extension and
lower case names (UNIX only)

COBPCO Pro*COBOL files (VAX/VMS only)

COM DCL command files (VAX/VMS only)

DESKTOP Desktop executable

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions and triggers

EXE Compiled PRO*COBOL executables for all
products

FORMS Oracle*Forms .fmb, .fmx, .mmb
(menus), .mmx, .pll (PL/SQL library) and .lib
(library) files

GIF Banner GIFs

INSTALL .SCTDMP file used during initial install (renamed
to .DMP during install)

JAVA Files that contain Java code

LOADER Oracle*Loader

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

XSD Oracle schemas

©2018 Ellucian. Confidential & Proprietary 29

Banner Standards

INSTALL

All Banner installation scripts

LINKS (UNIX Only)

Composite directory for local access of Banner products

PAYROLL (Banner Payroll)

C Pro*C and C source files

COB Pro*COBOL files (UNIX only)

COBPCO Pro*COBOL files (VMS only)

COM DCL command files (VMS only)

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions and triggers

DESKTOP Doc files

FORMS Oracle*Forms .fmb, .fmx, .mmb
(menus), .mmx, .pll and .lib files

INSTALL .SCTDMP file used during initial install (renamed
to .DMP during install)

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

POSNCTL (Banner Position Control)

C Pro*C and C source files

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions and triggers

FORMS Oracle*Forms .fmb and .fmx files

INSTALL .SCTDMP file used during initial install (renamed
to .DMP during install)

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

©2018 Ellucian. Confidential & Proprietary 30

Banner Standards

STUDENT (Banner Student)

C Pro*C and C source files

COB Pro*COBOL files (UNIX only)

COBPCO Pro*COBOL files (VMS only)

COM DCL command files (VMS only)

DBPROCS SQL*Plus scripts to recreate database
procedures, packages, functions and triggers

FORMS Oracle*Forms .fmb, .fmx, .pll and .lib files,
Oracle Reports

INSTALL .SCTDMP file used during initial install (renamed
to .DMP during install)

JAVA Files that contain Java code

LOADER Oracle*Loader

MISC Shell scripts (UNIX only)

PLUS SQL*Plus scripts

VIEWS SQL*Plus scripts to recreate views

COBOL standards

It is difficult to fully document exactly how a Banner COBOL program is to be written. Many
factors influence the particular programming approach that should be followed to satisfy specific
requirements. This section gives some guidelines and recommendations which should be followed
when an existing Banner COBOL program is modified or a new one created.

These guidelines are divided into three sections: Rules, Standards, and Style. Rules should always
be followed; standards should be followed unless there is a demonstrable need to do otherwise; and
styles are recommendations.

In general, rules address operating system portability, ANSI compliance, and Oracle version
compatibility. Standards enhance the maintainability of the code. Style relates primarily to the
appearance of the COBOL source code.

Rules

This rule applies only to those programs that perform a connect to an Oracle database.

Banner COBOL programs must make use of some of the General support objects to gain access
through the security routines. Two include files (also referred to as copybooks) are required, and
a Working Storage variable must be initialized. Additionally, the program should be able to be
compiled with the “sqlcheck= full” option. In certain circumstances however, this is not possible. For
example, GLBLSEL.pco cannot be compiled in this manner at sites which do not have Financial Aid

©2018 Ellucian. Confidential & Proprietary 31

Banner Standards

because the program references the RORVIEW TABLE. Compiling with “sqlcheck= full” in this case
would result in an error.

The first required include file is SETSEED. This must be placed immediately before the EDECLARE
include file, or, if EDECLARE is not used, immediately before the END DECLARE statement in
Working Storage. For example:

EXEC SQL INCLUDE SETSEED END-EXEC.
EXEC SQL INCLUDE EDECLARE END-EXEC.

The variable OBJECT-NAME is declared in SETSEED, and must be initialized just before the
include of the second include file that is required for security processing, SETROLE. The variable
initialization and include statement must be placed immediately after the connect to Oracle, as
shown in the example below:

EXEC SQL
CONNECT :USERID IDENTIFIED BY :PASSWRD
END-EXEC.
MOVE '<program name> 'TO OBJECT-NAME.
EXEC SQL INCLUDE SETROLE END-EXEC.

After ensuring that the above files are included, the program should be compiled with the
“sqlcheck=full” option.

Comment lines between logically grouped blocks of COBOL sentences are encouraged as they
make the program easier to read. Every comment line must contain an asterisk in column 7. In other
words it must be officially designated as a comment line. Certain compilers yield a syntax error if
they encounter a blank line that is not truly a comment line.

215-8 *
215-8 3800-DELETE-ALL-FROM-NHRFINC.
215-8 MOVE '3800' TO ABORT-PARA.
215-8 *
215-8 EXEC SQL
215-8 DELETE FROM NHRFINC
215-8 WHERE NHRFINC_CATEGORY_CODE BETWEEN 'A' AND 'J'
215-8 AND NHRFINC_INTERFACED_IND = 'Y'
215-8 END-EXEC.
215-8 *
215-8 EXEC SQL COMMIT WORK END-EXEC.
215-8 *
215-8 3800-EXIT.
215-8 EXIT.

When declaring variables in WORKING-STORAGE, the word PICTURE must be spelled out fully as
opposed to using the PIC abbreviation. Some compilers do not accept the abbreviation.

WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 MISC-DECLARE-SECTION-VARIABLES.
 05 USERID PICTURE X(20).

©2018 Ellucian. Confidential & Proprietary 32

Banner Standards

 05 PASSWRD PICTURE X(20).
 05 CONTROL-DISP PICTURE X(02) VALUE '60'.
 05 UPDATE-DISP PICTURE X(02) VALUE '62'.
 05 WORK-DATE PICTURE X(11).

Literals should be enclosed in single quotes ('xxx') instead of double quotes (“xxx”). This applies
to the VALUE clause in WORKING-STORAGE (as shown above) and literals used in the
PROCEDURE DIVISION.

*==
 * Added the following logic to determine if an automatic
 * login is being used, and if so, set up the field values
 * required for an automatic login.
 *==
 IF EACH-PARM (2) = '/'
 MOVE '/' TO DQY-AUTO-LOGIN-ARR
 IN DQY-AUTO-LOGIN
 MOVE 1 TO DQY-AUTO-LOGIN-LEN.
 *

Standards

All changes to a program should be recorded in the Audit Trail section at the top of the program
directly before the ENVIRONMENT DIVISION statement. The Audit Trail follows a particular format
which includes the sequential number of the modification within a release, a description of the
change, the programmer's initials and the date.

It should be proceeded with a brief description of the purpose of the program.

**
* This is the Population Selection extract program. It will
* create a list of PIDMs for a given selection ID, which can
* be used as input to the Letter Generation extract, or other
* reports.
**
* AUDIT TRAIL: x.x
*
* 1. SJQ 05/14/1991
* RENAME PROGRAM NAME TO UPPERCASE.
* 2. JEF 05/31/91
* Rename ROBDATA to GLBDATA and add letter generation
* modifications.
*

More recently, an alternative technique has been employed whereby the Audit Trail entry includes a
Problem or Need statement, a Functional Impact and a Technical changes statement.

* 2. RPM # 475. RLP 01/04/96
* Need - Computer Calculated Manual Checks should
* default to disposition '40'.

©2018 Ellucian. Confidential & Proprietary 33

Banner Standards

* Functional Impact - User no longer will have to balance
* computer calculated events that
* have been processed by PHPCALC.
 * Immediately after PHPCALC has been
 * run, the user can now run PHPDOCM.
*
 * Technical changes - All references to a disposition of'37’
 * have been removed or changed to '40'.
*
*

Each line of code that is affected by a particular modification should contain a “Mark Mod” in
columns 1 through 6 which indicates the release and sequential number of the change. For
example, the first modification in the program for release 2.1.7 would be marked with 217-1 in
columns 1 through 6. This is extremely useful when trying to fully track how, when and why a certain
line of code was changed. The following code includes lines affected by the tenth modification of the
2.0 release and the seventh modification of the 2.1.5 release:

IF DQY-ERROR-TYPE = 'F'
 EXEC SQL ROLLBACK WORK END-EXEC
 MOVE DQY-ERROR-MSG TO GJBRSLT-MESSAGE
 MOVE SPACES TO DQY-ERROR-MSG,
 DQY-ERROR-TYPE
 MOVE 'F' TO GJBRSLT-STATUS-IND
20-10 PERFORM DQY-INS-GJBRSLT THRU DQY-INS-GJBRSLT-EXIT
215-7 EXEC SQL COMMIT WORK END-EXEC
 PERFORM DQY-ABORT THRU DQY-ABORT-EXIT.

Each program should include a display statement up front in the logic of the format Starting
<program_name> (Release x.x.xx). The release number must be updated with each release for
which the program is modified. This gives a clear and easy way to verify that the correct program
and version of that program is being executed.

2000-SIGN-ON-TO-DBMS.
 MOVE '2000' TO ABORT-PARA.
13-14 DISPLAY ' '.
217-1 DISPLAY 'Starting PHPFEXP (Release 7.1.1)'.
 DISPLAY ' '.
 DISPLAY 'Username: '.
 ACCEPT USERID.
 MOVE SPACE TO WS-LOWER-CASE
 WS-UPPER-CASE.

Certain versions of the COBOL compiler behave differently with respect to command line
parameters and accepting data from the console (terminal). To accommodate these differences, it
was necessary to provide for a “dummy ACCEPT” statement as the first ACCEPT in the program.
A pre-compile definition of “SCT001” is used in conjunction with the standard Banner compile
scripts to allow control of whether this dummy ACCEPT is needed or not. Only when the SCT001
parameter is defined for the pre-compiler will the dummy ACCEPT end up in the executable code. It
is recommended that these first three lines of code be included in all programs.

©2018 Ellucian. Confidential & Proprietary 34

Banner Standards

10000-ENTER-PROGRAM.
20-14 EXEC ORACLE IFDEF SCT001 END-EXEC.
 ACCEPT WS-DUMMY-ITEM FROM USER-INPUT-DEVICE.
20-14 EXEC ORACLE ENDIF END-EXEC.
217-3 *
217-3 MOVE SPACES TO GJBRSLT-FIELDS.
217-3 PERFORM 11000-RETRIEVE-ONLINE-PARMS THRU 11000-EXIT.

Style

Care should be taken when lining up and indenting WORKING-STORAGE variable definitions. It is
much easier on the eye and is more conducive to understanding the program when one does not
have to struggle with confusing formatting that makes it difficult to discern the level relationships
between variables.

How it should be done:

20-9 01 FRINGE-CHARGE-BACK-WORK-AREA.
20-9 05 FBLD-HIT-SW PIC X(02).
20-9 05 FBLD-QUERY-DATE PIC S9(07) COMP-3.
20-9 05 FBLD-COAS-CODE PIC X(01).
20-9 05 IO-NTRFBIN-RATE PIC S9(04)V999 COMP-3.
20-9 05 IO-NTRFBEX-RATE PIC S9(04)V999 COMP-3.
202-2 05 FRINGE-POSTING-MODE PIC X(01).
202-2 05 FRINGE-INST-AMOUNT PIC S9(07)V99 COMP 3.
20-9 05 IO-NTRFBEX-FOAPAL.
20-9 07 IO-NTRFBEX-FUND-CODE PIC X(06).
20-9 07 IO-NTRFBEX-ORGN-CODE PIC X(06).
20-9 07 IO-NTRFBEX-ACCT-CODE PIC X(06).
20-9 07 IO-NTRFBEX-PROG-CODE PIC X(06).
20-9 07 IO-NTRFBEX-ACTV-CODE PIC X(06).
20-9 07 IO-NTRFBEX-LOCN-CODE PIC X(06).

How it should not be done:

20-9 01 FRINGE-CHARGE-BACK-WORK-AREA.
20-9 05 FBLD-HIT-SW PIC X(02).
20-9 05 FBLD-QUERY-DATE PIC S9(07) COMP-3.
20-9 05 FBLD-COAS-CODE PIC X(01).
20-9 05 IO-NTRFBIN-RATE PIC S9(04)V999 COMP-3.
20-9 05 IO-NTRFBEX-RATE PIC S9(04)V999 COMP-3.
202-2 05 FRINGE-POSTING-MODE PIC X(01).
202-2 05 FRINGE-INST-AMOUNT PIC S9(07)V99 COMP-3.
20-9 05 IO-NTRFBEX-FOAPAL.
20-9 07 IO-NTRFBEX-FUND-CODE PIC X(06).
20-9 07 IO-NTRFBEX-ORGN-CODE PIC X(06).
20-9 07 IO-NTRFBEX-ACCT-CODE PIC X(06).
20-9 07 IO-NTRFBEX-PROG-CODE PIC X(06).
20-9 07 IO-NTRFBEX-ACTV-CODE PIC X(06).
20-9 07 IO-NTRFBEX-LOCN-CODE PIC X(06).

©2018 Ellucian. Confidential & Proprietary 35

Banner Standards

The care needed for WORKING-STORAGE indentation applies similarly to the PROCEDURE
DIVISION. It is best to illustrate with examples:

PERFORM 2000-SIGN-ON-TO-DBMS THRU 2000-EXIT.
 PERFORM 3000-GET-PARAMETERS THRU 3000-EXIT.
215-8 *
215-8 PERFORM 4100-INITIALIZE-CAT-TOTALS THRU 4100-EXIT
215-8 VARYING CAT-SUB FROM 1 BY 1
215-8 UNTIL CAT-SUB > CAT-MAX.
215-8 *
215-8 MOVE ZEROS TO LIQUIDATION-TOTAL-D
215-8 LIQUIDATION-TOTAL-C.
215-8 *
215-8 IF PARM-ALL-PAYROLLS = 'Y'
215-8 IF PARM-PICT-CODE = SPACES
215-8 PERFORM 3410-DECLARE-AND-OPEN-PAYS-1 THRU 3410-EXIT
215-8 ELSE
215-8 PERFORM 3420-DECLARE-AND-OPEN-PAYS-2 THRU 3420-EXIT
.
.
.
215-7 WHERE HRHIST_PAYNO = PHRJOBS_PAYNO
215-7 AND PHRHIST_PIDM = PHRJOBS_PIDM
215-8 AND ((:PARM-REDIST-ONLY = 'N')OR
215-8 (PHRHIST_TYPE_IND = 'R') OR
215-8 (PHRHIST_TYPE_IND = 'V' AND
215-8 'R' =
215-8 (SELECT PHRHIST_TYPE_IND
215-8 FROM PHRHIST Y
215-8 WHERE Y.PHRHIST_YEAR = X.PHRHIST_YEAR
215-8 AND Y.PHRHIST_PAYNO = X.PHRHIST_PAYNO
215-8 AND Y.PHRHIST_PIDM = X.PHRHIST_PIDM))

Paragraph names should use a numbering scheme that communicates the structural hierarchy
of the PROCEDURE DIVISION logic. For example, all initial housekeeping paragraphs might be
grouped in the 1000- to 1900- range. The parameter input logic might be grouped in the 2000- to
2900- range and so on. A structure based on letters can also be used (AAA1-, AAA2-, ABB1- etc.)

All paragraphs should have an exit and the perform of a paragraph should always be “THRU” the
exit.

 3000-INITIALIZATION-CONTROL.
 PERFORM 4100-INITIALIZE-CAT-TOTALS THRU 4100-EXIT.
 3000-EXIT.
 EXIT. 4100-INITIALIZE-CAT-TOTALS.
 MOVE ZEROS TO CATEGORY-TOTAL-1,
 CATEGORY-TOTAL-2.
.
.
.
 4100-EXIT.
 EXIT.

©2018 Ellucian. Confidential & Proprietary 36

Banner Standards

C Standards

There is no simple answer to the question, “What is the correct or appropriate way to write a C
program?” The factors that influence the programming approach range from the global (such as,
how to write for maximum operating system portability) to the trivial (such as, how to indent blocks
of code).

This section gives some recommendations for C code developed as part of the Banner system.

These guidelines are divided into three sections: Rules, Standards, and Style. The differences
between the three are as follows: rules should always be followed; standards should be followed
unless there is a demonstrable need to do otherwise; and styles are recommendations which an
individual programmer may choose to discard.

Note that the Banner C coding standards are evolving and subject to change. Most Banner Pro*C
code originated as Oracle SQL*Report code that was converted to Pro*C using an automated
process, and as a result may not conform to all of the rules and standards in this section;
particularly, this code is rife with the goto statement. Subsequent code was developed over a period
of years as C standards were evolving, and so once again not every program delivered meets the
rules and standards below.

Rules

In general, items dealing with operating system portability, ANSI compliance, Oracle version
compatibility, and avoidance of common errors will be treated as rules.

Procedure

1. Adherence to the ANSI C standard is paramount; any exceptions are noted below. A copy of
The C Programming Language, 2nd Edition, by Brian Kernighan and Dennis Ritchie, should be
standard equipment for any programmer writing or modifying Banner C code.

2. All variable declarations global to the current compilation unit, function declarations, and
function prototypes must include the storage class modifier static unless they need to be
available for external linkage. Global variables and function declarations are, by default,
external. To support proper modularity, each program unit should only make external those
functions and variables which have been determined to be necessary for other code units to
access.

/* global variables with external visibility */
char username_password[62];
unsigned int status_code;
/* global variables visible only in current compilation unit */
static FILE *infile,*outfile;
static long line_count=0;

3. All functions must be fully prototyped, following ANSI standards, either in a header file (if
accessed by more than one source file) or at the top of the source file where it is declared. A
complete prototype consists of the return type of the function, the function name, and the types

©2018 Ellucian. Confidential & Proprietary 37

Banner Standards

of each parameter, along with the formal parameter names. As a matter of style, the prototype
should exactly match the actual function declaration, e.g.:

char *str2lc(char *str);
.
.
.
char *str2lc(char *str)
{
...
}

4. The goto statement should never be used in new C code and should be removed from
all existing code when possible; this also eliminates any need for labels. Use structured
programming techniques instead.

/* parameter validation code with gotos and labels */
askparms:
 input(ask_p_owner,"TABLE CREATOR: ",30,ALPHA);
 if (!*ask_p_owner) goto rdowner;
 strcpy(p_owner,ask_p_owner);
 goto nexta;
rdowner:
 strcpy(parm_no,"01");
 sel_optional_ind(FIRST_ROW);
 if (compare(rpt_optional_ind,"O",EQS)) goto nexta;
 goto missing_parms;
nexta:
/* parameter validation code without gotos and labels */
input(ask_p_owner,"TABLE CREATOR: ",30,ALPHA);
if (!*ask_p_owner)
 {
 strcpy(parm_no,"01");
 sel_optional_ind(FIRST_ROW);
 if (compare(rpt_optional_ind,"O",NES)
 missing_required_parm("Table Creator");
 }

5. All programs should include guastdf.h, and only this file should include standard headers. This
will limit the number of changes necessary for new compilers or hardware platforms and will
insure that all necessary headers are included. Note that guarpfe.h includes guastdf.h, so an
explicit inclusion is not necessary.

#include "guarpfe.h" /* good; gets all required headers */ #include
"myheader.h" /* good; local header */ #include <sys/strtty.h> /* bad;
non-portable, system-specific */

6. No compiler or platform specific functions may be used. Only those functions found in the ANSI
standard libraries are available on all supported platforms. Exceptions to this rule, such as
the use of the UNIX and OpenVMS provided function sleep, may be made with management
approval. Refer to The C Programming Language, 2nd Edition, by Brian Kernighan and Dennis
Ritchie, for a definitive listing of the functions available.

©2018 Ellucian. Confidential & Proprietary 38

Banner Standards

7. The following ANSI features are not available under otherwise compliant compilers, such as
older versions of DEC C, and are not to be used unless all supported compilers implement them
in the future: the atexit and memmove functions, concatenation of adjacent string literals, and ##
macro expansion. Also, an assignment followed by the “address of” or “dereference” operator
with no intervening space, is misinterpreted by some releases of DEC C. Accordingly, use

a= *b;

instead of

a=*b;

Finally, DEC C requires that main be of type int and return a value to the operating system.

int main(int argc,char *argv[]) /* suggested portable declaration of
main */

8. All handling of file names from the operating system is done with the makefn and parsfn
functions defined in guastdf.h to provide maximum code portability.

FNSTRUC outfile;
.
.
.
strcpy(outfile.fname,*argv);
parsfn(&outfile);
strcpy(outfile.ext,"lis");
makefn(&outfile);

9. All programs should use the function exit2os, defined in guastdf.h, to return to the operating
system; this will ensure that all necessary database and memory cleanup is performed.
Application code should never use the standard function exit. Also, application code should
never reach a return from within the main function; however, to prevent warnings from some
compilers, the exit2os call at the bottom of main should be immediately followed by a return.

int main(int argc,char *argv[])
{
 ...
 /* all done */
 exit2os(EXIT_SUCCESS);
 return 0;
}

10. All Pro*C programs must include the file guaorac.c and use the provided database utility
functions for database connection and disconnection, and use the macro POSTORA to check for
database errors. This will insulate code from future changes to Pro*C internals and provide a
common interface to the database for all programs. Most importantly, the login function must
be used to connect to the database with Banner security enabled.

/* minimal.pc */
#include <guastdf.h>
EXEC SQL INCLUDE guaorac.c;
int main(int argc,char *argv[])

©2018 Ellucian. Confidential & Proprietary 39

Banner Standards

{
 CHAR31 myname;
 /* necessary for security in absence of rptopen */
 getxnam(*argv);
 /* login to database with three tries */
 login();
 EXEC SQL SELECT user INTO :myname FROM dual;
 /* check for error */
 POSTORA;
 printf("Logged on to Oracle as %s\n",myname);
 /* does database exit, other cleanup */
 exit2os(EXIT_SUCCESS);
 return EXIT_SUCCESS;
}

11. All application and support code should Pro*C pre-compile and C compile with no warnings or
errors on all supported platforms. Following ANSI standards eliminates the majority of problems,
but certain compilers may be more restrictive than others. For example, when using the Pro*C
pseudo-datatype VARCHAR, it is necessary to explicitly typecast the arr member to a character
pointer in standard function calls under some compilers. In short, when in doubt, cast.

12. All Pro*C programs should recognize the -t command-line switch to turn on the SQL trace
facility. Programs converted from earlier Oracle SQL*Report code use rptopen to handle this
option.

int main(int argc,char *argv[])
{
 extern short sqltrace_flag;
 rptopen(user_pass,argc,argv);
 login();
 if (sqltrace_flag)
 EXEC SQL ALTER SESSION SET SQL_TRACE TRUE;

13. Many C compilers allow modification of literals by means of pointers; this is not allowed in our C
code. Consider the following code:

...char *ptr="SCT"; *ptr = '\0';...

Here ptr points to an area of storage containing the string literal "SCT", which may not be
unique storage if the same literal appears elsewhere in the program. Modifying the storage
pointed to by ptr may work as expected, but if the new value assigned to ptr is longer than
the original literal area, then memory errors will occur. Also, some compilers will signal an error
or warning message if such an operation is attempted.

14. Always check error status after any I/O or database operation. The guastdf.h include file defines
the macro POSTORA to make Oracle error checking simpler, and all file I/O operations should be
followed by a check using the ferror standard function.

EXEC SQL SELECT ename
 INTO :ename:ename_ind
 FROM emp
 WHERE empno = :empno;
POSTORA;
fprintf(outfile,"%d:%s\n",empno,ename);

©2018 Ellucian. Confidential & Proprietary 40

Banner Standards

if (ferror(outfile))
 prtmsg(IOERROR,outfile_name);

15. Functions which return a pointer to a local variable must give the static storage class to the
return variable. If the keyword static is not supplied, then the storage for the local variable may
be reused by the program before the calling function is able to access the address. This is a
common error which is rarely caught by the compiler or tools such as lint, and may even work
correctly on some machines, depending on the way that the memory heap is managed.

For example, consider a function that generates a new password string and returns a pointer to
the new value. The calling function will then copy this value elsewhere for storage, as the value
will be lost when the password function is next called.

char *getpassword(void)
{
 static char passval[9];
 .
 .
 .
 return passval;
}

16. Indicator variables must be used on all SQL output variables, and on all non-string input
variables (unless a non-NULL value is guaranteed.) This is to prevent truncation warnings when
the target is too small for the source, and to properly handle NULL values. See Rule 14 for an
example.

17. Complex structures which will be reused should be typedefed in to simplify and clarify the
code. For example, consider the structure and declarations for implementing a linked list of file
information:

typedef struct fn_node_struct
 {char *fname;
 char *owner;
 unsigned long fsize;
 struct fn_node_struct *next_fn_node;} FN_NODE;
FN_NODE *head,*tail;

18. Use Oracle datatype equivalencing to handle C-style null-terminated strings in preference to
the VARCHAR pseudo-datatype. All C code originally converted from Oracle SQL*Report code
uses this method, as does most subsequent Banner code uses this method. The include files
guastdf.h and guaorac.c provide predefined typedefs for string sizes from 2 to 256 characters in
length (1 to 255 usable characters plus the terminating null;) if a particular application requires
longer strings, or strings embedded within arrays, then use explicit Pro*C TYPE IS and VAR
IS logic (see the Programmer's Guide to the Oracle Pro*C Precompiler for details).

/* Without datatype equivalencing */
VARCHAR zipcode[11];
.
.
.
EXEC SQL SELECT zipcode

©2018 Ellucian. Confidential & Proprietary 41

Banner Standards

 INTO :zipcode:zip_ind
 FROM address
 WHERE empno = :empno;
POSTORA;
zipcode.arr[zipcode.len] = '\0';
/* With datatype equivalencing */
CHAR11 zipcode;
.
.
.
EXEC SQL SELECT zipcode
 INTO :zipcode:zip_ind
 FROM address
 WHERE empno = :empno;

19. Use the appropriate numeric datatype for the application, keeping in mind the limitations of
each. The basic choices are a C integer type, a C floating-point type, or the provided pseudo-
datatype of NUMSTR.

Integers are limited to whole numbers only, and in comparison to the Oracle internal NUMBER
datatype have a small number of significant digits. A C integer datatype (e.g., long, unsigned
int) should only be used as a SQL input/output variable if the Oracle column is a whole number
that will never be larger/smaller than the ANSI-defined range for the C datatype. For example,
the ANSI-defined minimal magnitudes for a long datatype are -231 to 231-1 (approximately +/-
two billion). Integer data types may be appropriate for database columns such as counters and
sequences.

Floating-point numbers in C have a minimum of 10 significant digits in the ANSI standard.
This limitation makes them inappropriate for most currency calculations. However, all Banner-
supported platforms currently have at least 15 digits of precision for the double datatype, so
using double as an SQL input-output variable is acceptable provided that the database column
in question is known to never exceed 15 digits. This precision should be adequate for nearly all
calculations involving U.S. currency, but may be inadequate for non-U.S. currency transactions.

All C codeconverted from Oracle SQL*Report code, and much code written subsequent to the
conversion, uses the NUMSTR pseudo-datatype to provide a guaranteed 24 digits of precision.
This datatype is implemented by representing numbers as fixed character strings, and only the
four basic arithmetic operators are provided; more elaborate calculations must be performed in
the database. The advantages of this datatype are the increased precision, and the elimination
of the need for indicator-variable processing (since empty strings are interpreted by Oracle as
NULLs.)

Standards

Those items whose primary purpose is to enhance maintainability of the code will be standards.

Procedure

1. A consistent system for naming variables may be mandated by individual technical managers
(e.g., so-called Hungarian notation). If a system is not used, then at minimum variable and
function names should be long enough to be descriptive, but not so long as to interfere with a
clear understanding of the code.

©2018 Ellucian. Confidential & Proprietary 42

Banner Standards

2. Pro*C programs which were converted from Oracle SQL*Report code have all variables created
as globals within the compilation unit, a required strategy because SQL*Report provided
only global variables. With new code, or modifications to converted code, good structured
programming techniques dictate the usage of local variables as a general rule, with global
variables reserved for those occasions when they are necessary to prevent excessively
complex or awkward code.

3. If a function in one of the support files (such as guastdf.h) is available to perform the task at
hand, use it instead of creating a new one. Likewise, if a function is developed which is of
general utility (such as string or number handling, I/O functions, etc.) then it should be placed in
one of the support files to be available for all Banner code.

4. Functions, macros, etc. which extend the language (i.e., support code such as that found in
guarpfe.h or guastdf.h) should be named mnemonically, without regard to product. For example,
the function to replace a string with its lower case equivalent is named str2lc. The name of any
other program object which will be used by multiple programs within a specific product should
be named following usual Banner rules for the initial character. For example, a Finance function
to calculate available balance could be named favlbal.

5. Do not depend on the numeric value of a particular macro remaining unchanged or always
testing to true or false. Instead, compare the value in question with the current value of the
macro. There are exceptions, such as the TRUE and FALSE macros in guastdf.h, where the
numeric value will always remain unchanged.

#define OS_VMS 0
#define OS_UNIX 1
#define OS_NT 2
.
.
.
/* don't do this */
if (opsys)
 printf("Operating system is UNIX or Windows NT\n");
/* do this instead */
if (opsys==OS_UNIX || opsys==OS_NT)
 printf("Operating system is UNIX or Windows NT\n");

6. The general structure of a C program should be as follows:

#include ... /* header file includes */
EXEC SQL INCLUDE ... /* Pro*C includes */
#define ... /* macro definitions */
static void my_fcn(void); /* function prototypes */
static int flag; /* non-ORACLE globals */
EXEC SQL BEGIN DECLARE SECTION/* ORACLE globals */
int main(... /* the function main */
static void my_fcn(void) /* all other functions */

Functions should be defined in some logical order, such as alphabetic or by purpose.
7. Variables which are initialized at declaration time should appear on separate lines; e.g.:

static int flag=TRUE,error=FALSE;

©2018 Ellucian. Confidential & Proprietary 43

Banner Standards

should be written as:

static int flag=TRUE, error=FALSE;

8. Every function or other major block of code (blocks of prototypes, variable declarations, etc.)
should be preceded by explanatory comments.

9. Names of macros and type definitions should usually be in all capitals to clearly differentiate
them from functions and standard C features.

10. Procedural macros should not include a closing semicolon, which should instead be coded
when the macro is invoked. Many programmers code macros which are not enclosed in braces
with a closing semicolon, but the resulting invocation can look confusing, as a line of code
without the semicolon looks “incomplete” when scanning the code.

#define POSTORA if (sqlca.sqlcode < 0) dberror(__FILE__,__LINE__)
.
.
.
POSTORA;

11. Explicit SQL cursors should be closed when they are no longer needed. This may be very
difficult to ascertain for converted code, but new development should follow this standard.

12. Cursor names should be descriptive. The generated Pro*C programs use one-up numeric
cursor names, but new programs should be more clear.

...
EXEC SQL DECLARE retrieve_name CURSOR FOR
SELECT ename
FROM emp;

13. Consider the use of array fetches to improve the performance of programs which retrieve a
large number of rows from the database. Refer to the Programmer's Guide to the Oracle Pro*C
Precompiler for details.

14. All messaging for any functions added to the support code files should be handled by prtmsg,
with the actual message text added to guaerror.h.

15. Keep it simple. It is easy to write cryptic, code that cannot be maintained in C; however, other
programmers may need to maintain your code in the future.

16. Again, keep it simple, but not too simple. Become familiar with common C constructs and the
functions available through the standard libraries. For example, here are two versions of a
function that changes all occurrences of one character in a string to another character. Both
functions provide correct output, but the second is “better” because it uses standard C functions
and conventions to accomplish the task.

/* "Bad" version of chgchar */
char *chgchar(char *str,char oldc,char newc)
{
 int i;
 if (strcmp(str,"\0") == 0)
 printf("String is empty\n");

©2018 Ellucian. Confidential & Proprietary 44

Banner Standards

 else
 for (i=0 ; str[i] != '\0' ; i++)
 if (str[i] == oldc)
 str[i] = newc;
 return str;
}
/* "Good" version of chgchar */
char *chgchar(char *str,char oldc,char newc)
{
 char *p=str-1;
 if (!*str)
 printf("String is empty\n");
 else
 while ((p=strchr(p+1,oldc)) != NULL)
 *p = newc;
 return str;
}

17. The SQL DECLARE SECTION syntax is now optional. With Pro*C 2.x and above all C code
is parsed, so variables declared anywhere in the program, including standard declarations,
function parameters, and macro expansions, are available for use as both input and output
variables in SQL code. Because it is still a good idea to group variables by function, existing
code may continue to use a declare section.

Style

Style relates primarily to the appearance of the C source code, and the guidelines given here
describe one programmer's approach to this issue; the goal with the style guidelines is not to be
prescriptive, but rather to provide guidance for novice C programmers.

Procedure

1. Be consistent; whatever style for commenting, indentation, etc., is used in a program, use the
style consistently throughout the program.

2. Wherever any purely stylistic guideline interferes with the readability of the code, ignore it. The
only purpose of a programming style is to enhance, not diminish, the maintainability of the
program.

3. Begin functions at the left margin, with the opening and closing braces flush against the margin.
All code is indented two spaces. Subsidiary blocks of code, such as targets of if statements, are
likewise indented two spaces.

char *str2lc(char *str)
{
 char *p;
 for (p=str ; *p ; p++)
 if (isupper(*p))
 *p = tolower(*p);
 return str;
}

©2018 Ellucian. Confidential & Proprietary 45

Banner Standards

4. Where a block of code rather than a single line is used, the opening and closing braces should
be lined up in the column for the current indentation, with the contained code indented another
two spaces.

if (flag)
 {
 flag=FALSE;|
 if (str)
 {
 puts(str);
 str = NULL;
 }
 }

5. Comment thoroughly. Use line comments where applicable (e.g., explaining a variable
declaration) and block comments elsewhere. Start block comments with the comment open
symbol, one space, and then the first line of the comment. End block comments with a carriage
return and a comment close, lined up underneath the comment open. Block comments are also
delineated by single blank lines before and after the block.

static char *name; /* example line comment */
/* Here is an example of a block comment, defined as a comment which
 is longer than a single line.
*/

6. Avoid extraneous braces in code that is the target of an if or else statement. For example, do
not code the following:

if (flag)
 {
 puts("TRUE");
 }
else
 {
 puts("FALSE");
 }
Instead, code the following:
if (flag)
 puts("TRUE");
else
 puts("FALSE");

7. For complex data structures and type definitions, indent individual members consistently for
maximum readability.

typedef struct source_struct {char *srcline; struct source_struct
*next_source;} SOURCE;

8. For if and other logical statements, when the statement will not fit entirely on one line, break it
and indent past the opening parenthesis.

for (p=head_token ; p && p->type=RPTKEY ; p=p->next_token)
printf("%s\n",p->str);

©2018 Ellucian. Confidential & Proprietary 46

Banner Forms Architecture

Banner Forms Architecture
Banner Forms Architecture

This section provides a brief overview of the architecture of Banner and uses three architectural
views: logical view, implementation view, and case view. The logical view discusses classes,
whereas the implementation view describes certain portions of the code. Lastly, the case view
delineates the process by which one can create a form that is compatible with the new standards.

Introduction

To facilitate the discussion in this section of the architecture of Banner, Unified Modeling Language
(UML) notation is used to underline the relationship of classes. UML is a formalism that expresses
patterns of collaboration between classes and objects.

Oracle Forms 6i is not an object-oriented tool; however, the introduction of property classes
facilitates the use of object-oriented concepts that better explain the relationships of classes.

Generally, the organizational structure of software is referred to as architecture. Architecture is
hereafter represented through 4+1-view model, which is composed of five views: logical view,
implementation view, process view, deployment view, and case view.

• The logical view consists of the system’s object model: class diagrams, sequence diagrams and
collaboration diagrams

• The implementation view gives insights into the code and its organization
• The process view provides information about the interaction of tasks
• The deployment view focuses on the physical architecture of the system
• The case view models interaction between user and system

As mentioned in the objective, only three views will be discussed in this document: the logical view,
the implementation view and the case view.

The introduction of object-oriented concepts permits the usage of object-oriented terminology, which
has a correspondence in Oracle Forms. (This is not a mere exercise in renaming Oracle Forms
terms, but it serves the purpose of drawing a logical connection between object-oriented techniques
and Oracle Forms.)

Classes

A class is a blueprint or prototype that defines attributes and methods common to all objects.
Classes can also be divided into superclasses and subclasses when an inheritance between

©2018 Ellucian. Confidential & Proprietary 47

Banner Forms Architecture

classes is performed. Using this definition, the Property Classes of Oracle Forms 6i can be referred
to as classes.

Attributes

Attributes define the state of an object. An object is an instance of a class. Its properties are to send
and receive messages. In Oracle Forms 6i, each of the properties in a property sheet and some
variables such as local variables and items within blocks, can be identified as attributes of a class.

Methods

Methods define the behavior of an object. In Oracle Forms 6i, triggers can be referred to as
methods.

Objects

Objects are instances of classes. They are formed from the union of state and behavior.

They can be best represented by the following:

Object = State + Behavior.

Banner

Banner, as a client application, comprises about two thousand Oracle Forms, modules, or objects.
These forms are divided into three families: Validation, Application, and Inquiry. Each family inherits
attributes (properties) and methods (triggers) from a superclass, G$_FORM_CLASS.

There are differences in behavior between the three families of forms, which is defined by the
methods or triggers in each class.

• The family Validation, which is identified by the subclass G$_VAL_FORM_CLASS, defines a form
without a key block and with one or more blocks on which creation, modification and deletion of
rows is allowed.

• Alternatively, the family Application, which is identified by the subclass G$_APPL_FORM_CLASS,
defines a form with a key block and with one or more additional blocks in which the operations of
creation, modification and deletion of rows are allowed.

• The family Inquiry, which is identified by the subclass G$_INQ_FORM_CLASS, defines a form with
or without a key block where the operations of creation, modification and deletion of rows are not
allowed.

In addition to G$_FORM_CLASS, G$_VAL_FORM_CLASS and G$_APPL_FORM_CLASS, G
$_INQ_FORM_CLASS, there are other relevant classes that are discussed in the Logical View.

©2018 Ellucian. Confidential & Proprietary 48

Banner Forms Architecture

The Logical View

The logical view offers aspects of the system’s object model, and how the classes are composed
and related to each other. No collaboration diagrams will be provided in this document.

The Superclass G$_FORM_CLASS

G$_FORM_CLASS is a blueprint of a form. This class is a superclass because it is inherited by those
subclasses that identify families of forms.

As stated previously, a family of forms is a group of related forms that share attributes (fundamental
properties) and methods (triggers) of the same superclass. Attributes define the state of a form,
while methods define the behavior of a form.

Figure 1: Superclass G$_FORM_CLASS

©2018 Ellucian. Confidential & Proprietary 49

Banner Forms Architecture

Methods

Methods refer to triggers. They are divided into Security, PRE and POST, Event, KEY and Special
methods, and are further classified as either form or user-defined triggers.

Security methods

The following are user-defined triggers that grant and revoke roles in Banner.

G$_VERIFY_ACCESS

G$_REVOKE_ACCESS

PRE and POST methods

The following are navigational and transactional triggers that perform additional processing before
or after an event.

PRE-FORM

PRE_FORM_TRG

PRE-BLOCK

PRE_BLOCK_TRG

PRE-INSERT

PRE-UPDATE

POST-FORM

POST_FORM_TRG

Event methods

The following are triggers that are preformed when a specific event has occurred.

WHEN-BUTTON-PRESSED

WHEN-NEW-FORM-INSTANCE

WHEN-NEW-BLOCK-INSTANCE

WHEN_NEW_BLOCK_INSTANCE_TRG

WHEN-MOUSE-DOUBLECLICK

WHEN-TIMER-EXPIRED

WHEN-WINDOW-ACTIVATED

WHEN_WINDOW_ACTIVATED_TRG

WHEN-WINDOW-CLOSED

©2018 Ellucian. Confidential & Proprietary 50

Banner Forms Architecture

KEY methods

The following are triggers which change the default processing of associated keys on the keyboard.

KEY-CLRFRM

KEY-F2

KEY-MENU

KEY-DOWN

KEY-UP

KEY-LISTVAL

KEY-NXTBLK

KEY-PRVBLK

KEY-NXTREC

KEY-PRVREC

KEY-NXTSET

KEY-SCRUP

KEY-SCRDOWN

KEY-PRINT

KEY-ENTQRY

KEY-EXEQRY

KEY-EXIT

KEY_EXIT_TRG

KEY-NXTKEY

KEY_NXTKEY_TRG

Specialized methods

The following are user-defined triggers that are used for various purposes.

DISPLAY_B2K_HELP_TRG

GLOBAL_COPY

LIST_VALUES_COPY

LOAD_FORM_HEADER

LOAD_CURRENT_RELEASE

SAVE_KEYS

ENABLE_KEYS

DISABLE_KEYS

©2018 Ellucian. Confidential & Proprietary 51

Banner Forms Architecture

INVALID_OPTION_MSG

UPDATE_ACTIVITY

Subclasses

The subclasses G$_VAL_FORM_CLASS, G$_APPL_FORM_CLASS, and G$_INQ_FORM_CLASS
inherit attributes and methods from G$_FORM_CLASS. However, these three subclasses possess
their own methods, which override the superclass methods.

Subclass G$_VAL_FORM_CLASS

The subclass G$_VAL_FORM_CLASS is a blueprint of a form without a key block and with one or
more blocks in which creation, modification and deletion of rows is allowed.
Figure 2: Subclass G$_VAL_FORM_CLASS

Subclass G$_APPL_FORM_CLASS

The subclass G$_APPL_FORM_CLASS defines a form with a key block and with one or more blocks
on which the operations of creation, modification and deletion are allowed.
Figure 3: Subclass G$_APPL_FORM_CLASS

©2018 Ellucian. Confidential & Proprietary 52

Banner Forms Architecture

Subclass G$_INQ_FORM_CLASS

The subclass G$_INQ_FORM_CLASS defines a form with or without a key block where the
operations of creation, modification and deletion are not allowed.
Figure 4: Subclass G$_INQ_FORM_CLASS

©2018 Ellucian. Confidential & Proprietary 53

Banner Forms Architecture

Inheritance

The inheritance tree below provides a visual representation of the layers of class hierarchy, where
descent from the tree implies the further specialized of behavior. Inheritance can be defined as a
technique used between classes to implement classification.
Figure 5: Inheritance of Class

Banner can be viewed as a collection of forms, each of which performs specific functions. The forms
can be categorized into forms that allow or do not allow the creation, modification and deletion of
rows, and forms that have and do not have a key block.

Menu, Application, Validation and Rule forms inherit the G$_APPL_FORM_CLASS if they contain a
key block. If there is no key block in these forms, they inherit the G$_VAL_FORM_CLASS.

©2018 Ellucian. Confidential & Proprietary 54

Banner Forms Architecture

Forms that do not allow a user to create, modify, or delete rows (e.g., Inquiry, Query, Wizard, and
Control forms) inherit the class G$_INQ_FORM_CLASS, regardless of the existence of the key block.

Figure 6: Class inheritance and classification of forms.

A form as an object

The superclass G$_FORM_CLASS and its subclasses define the behavior of form as a whole. The
appropriate subclass therefore needs to be referenced into a form. The appropriate subclass for a
form is selected using the Class attribute of the Form Module property sheet for that form.

When a form has been associated with the appropriate subclass, the form can be referred to as an
object. Objects have certain characteristics such as the ability of interacting, passing, and receiving
messages. In Banner, forms communicate with each other by passing parameters and global
variables.

©2018 Ellucian. Confidential & Proprietary 55

Banner Forms Architecture

Interaction between two or more forms

Every time a form calls another form, it passes three parameters: G$_HT_TOOLBAR, G
$_VT_TOOLBAR and G$_PREFERENCES.

G$_HT_TOOLBAR contains information about the buttons displayed on the horizontal toolbar.
This information provides the position and the attributes of the buttons as defined in the
General User Preferences Maintenance Form (GUAUPRF). G$_VT_TOOLBAR is identical to the
previous parameter, but it contains information about buttons displayed in the vertical toolbar. G
$_PREFERENCES provides information about six preferences as defined in GUAUPRF:

Display Horizontal Toolbar: attributes (Y/N)

Display Vertical Toolbar: attributes (Y/N)

These toolbars are part of the MDI Window, and they have the options to be turned on so that they
are displayed.

Display bubble help: attribute (Y/N)

The bubble help is a hint that is displayed when the mouse goes over the button. It is available only
for iconic buttons.

Display form name on title bar: attributes (Y/N)

The seven- or eight-character form name will appear after the form name and description in the
title bar of the main window, and after each window name and description in the title bar of any
secondary windows.

Display release number on title bar: attributes (Y/N)

The form release number shows the current version of a form and it will appear after the seven- or
eight-character form name. The release number is stored in the LOAD_CURRENT_RELEASE form
level trigger.

For example:

:CURRENT_RELEASE := ‘6.0’;

©2018 Ellucian. Confidential & Proprietary 56

Banner Forms Architecture

Display database instance on title bar: attributes (Y/N)

The database instance will appear after the window name.

Global variables are not passed like the way parameters are passed. Global variables reside in
memory, and forms read and modify them as needed.

Figure 7: Representation of interaction between forms.

Key block

A key block is a type of control block. There are two characteristics of the key block. It has one
record, and the items of that record are a representation of keys, which hold the values of the items.
The keys will be used to query subsequent blocks in the same form.

The attributes of G$_KEY_BLOCK_CLASS

Records Displayed = 1

Record Orientation = Vertical

Navigation Style = Same Record

Primary Key = False

Column Security = False

Delete Allowed = True

Insert Allowed = True

Query Allowed = True

WHERE Clause = key-block

©2018 Ellucian. Confidential & Proprietary 57

Banner Forms Architecture

This is the signature of the block. It is used when interacting with other blocks.

Records Buffered = 1

Records Fetched = 0

Update Allowed = True

Update Changed Columns = False

Key Mode = Unique

Locking Mode = Immediate

Transactional Triggers = False

Direction = Default

In Menu = True

Block Description = Key Information Block

The methods of G$_KEY_BLOCK_CLASS

POST-BLOCK

KEY-COMMIT

KEY-UP

KEY-DOWN

KEY-CREREC

KEY-DELREC

KEY-ENTQRY

KEY-EXEQRY

KEY-NXTREC

KEY-NXTSET

KEY-NXTBLK

KEY-PRVBLK

KEY-PRVREC

©2018 Ellucian. Confidential & Proprietary 58

Banner Forms Architecture

The class G$_KEY_BLOCK_CLASS

The class G$_KEY_BLOCK_CLASS is a prototype of a key block for any form. The attributes define
the key block class as a non-base table block with one record only. The methods are responsible for
navigation within the block and for disabling transactional functions.
Figure 8: Key Block class

©2018 Ellucian. Confidential & Proprietary 59

Banner Forms Architecture

Interaction between the key block and other blocks

The key block has the ability to exchange messages with other blocks. The key block sends a
message to validate the items in the key block. This is done by setting the parameter CHECK_KEYS
to Y.

Also, other blocks communicate with the key block, asking the key block to change the values of its
keys as required. This is accomplished by setting the parameter CHECK_KEYS to N.

Figure 9: Example of interaction between a key block and other blocks in a form.

Of the triggers, which control the functions of a key block, the trigger POST-BLOCK is generally
responsible for altering the value of the variable CHECK_KEYS. Generally, CHECK_KEYS allows the
disabling of the key items displayed in a key block before navigating into another block.

The function ROLLBACK allows a user to leave any block and navigate back to the key block. This
operation saves the keys into global variables, then enables the keys in the key block and lastly
copies the content of the global variables back to the item keys.

©2018 Ellucian. Confidential & Proprietary 60

Banner Forms Architecture

The G$_FS_CANVAS_CLASS Class

The G$_FS_CANVAS_CLASS defines one canvas-view as the main canvas, generally associated
with the main window. Only the canvases that have the width and height of 473 X 328 points have
the G$_FS_CANVAS_CLASS assigned to it as a Class in the ‘canvas-view’ property sheet.

Attributes

Canvas-view Type = Content

Display = TRUE

Width = 473

Height = 328

Bevel = None

Visual Attribute Name = none

Raise on Entry = False

X Position on Canvas = 0

Y Position on Canvas = 0

Direction = Default

View Width = 0

View Height = 0

Display X position = 0

Display Y Position = 0

View Horizontal Scroll Bar = False

View Vertical Scroll Bar = False

The G$_FS_WINDOW_CLASS Class

Windows that have the width and height of 473 x 328 points are assign to the G
$_FS_WINDOW_CLASS in the Class attribute of the Window property. When a window includes only
one block other than the key information, a block title is not needed for the data block.

Where data is grouped within a block and given a title, the data is enclosed by a beveled box. The
title for that block is then centered on top inside the block.

Attributes

X position = 0

Y Position = 0

Width = 473

Height = 328

©2018 Ellucian. Confidential & Proprietary 61

Banner Forms Architecture

Bevel = Raised

Visual Attribute Name = none

Window Style = Document

Modal = false

Remove on exit = false

Direction = Default

Horizontal Scroll Bar = False

Vertical scroll Bar = False

Closeable = False

Fixed Size = False

Iconifiable = True

Inherit Menu = True

Moveable = True

Zoomable = False

Items

There are three types of items that are identified by classes: items that enable search on any code
and description, items that enable search on ID and Name only, and items having the data type
Date.

The G$_CODE_CLASS Class

The class G$_CODE_CLASS models a search mechanism on any code and any description within
the appropriate associated tables.

The code item, through the method KEY-NEXT-ITEM performs a request to the database to search
for a particular code or description. If a code or description that matches the value entered by a
user does not exist, the code item sends back a not found message. If either a matching code or
description exists, a list of matches is presented to the user.

Attributes

Item Type = Text Item

Displayed = True

Bevel = Lowered

Rendered = True

Visual Attribute name =

Current Record Attribute =

Maximum Length = Enabled = True

Navigable = True

©2018 Ellucian. Confidential & Proprietary 62

Banner Forms Architecture

Query Only = False

Insert Allowed = True

Query Allowed = True

Query Length = 0

Case Insensitive Query = False

Update Allowed = True

Update Only if Null = False

Lock Record = False

Case Restriction = Upper

Alignment = Left

Multi-line = False

Wrap Style = None

Secure = False

Keep Position = False

= True

Reading Order = Default

Initial Keyboard State = Default

Vertical Scroll bar = False

Auto hint = true

Methods

WHEN-MOUSE-DOUBLECLICK

WHEN-NEW-ITEM-INSTANCE

G$_SEARCH_PARAMETERS

G$_SEARCH_OPTION

KEY-NEXT-ITEM

POST-TEXT-ITEM

The G$_DESC_CLASS Class

This class displays the description of code and description.

Attributes

Item type = text item

©2018 Ellucian. Confidential & Proprietary 63

Banner Forms Architecture

Displayed = True

Bevel = Lowered

Rendered = True

Maximum Length = 30

Enabled = True

Navigable = False

Base Table Item = False

Query Only = False

Primary key = False

Insert Allowed = True

Query Allowed = False

Case Insensitive Query = False

Update Allowed = False

Update Only if Null = False

Lock Record = False

LOV for Validation = False

Hint = G$_DESC_ITEM

Methods

WHEN-NEW-ITEM-INSTANCE

The Class G$_ID_CLASS

The class G$_ID_CLASS models a search mechanism on any ID and any Name within the
appropriate associated tables.

The ID item, through the method KEY-NEXT-ITEM performs a request to the database to search
for a particular ID or Name. If an ID or Name that matches the value entered by a user does not
exist, the code item sends back a not found message. If either a matching ID or Name exists, a list
of matches is presented to the user.

Attributes

Displayed = True

Width = 54

Height = 17

Bevel = Lowered

Rendered = True

©2018 Ellucian. Confidential & Proprietary 64

Banner Forms Architecture

Visual Attribute name = G$_NVA_TEXT_ITEM

Current Record Attribute = Data type = CHAR

Maximum Length = 9

Fixed Length = False

Required = False

Format Mask =

Range Low Value = Range High Value =

DefaultValue = Copy Value From Item =

Enabled = True

Navigable = True

Query only = False

Primary key = False

Insert Allow = true

Query Length = 9

Case Insensitive Query = False

Lock Record = False

Case Restriction = Upper

Alignment = Left

Multi-line = False

Wrap Style =None

Secure = False

Keep Position = False

Auto Skip = true

Reading Order = Default

Initial Keyboard state = Default

Vertical Scroll Bar = False

Auto Hint = True

Item Type = Text Item

Methods

PRE-TEXT-ITEM

KEY-NEXT-ITEM

KEY-LISTVAL

©2018 Ellucian. Confidential & Proprietary 65

Banner Forms Architecture

KEY-CQUERY

WHEN-VALIDATE-ITEM

POST-CHANGE

The Class G$_NAME_CLASS

This class displays the Name of an associated ID.

Attributes

Item Type = Text Item

Displayed = True

Height = 17

Bevel = Lowered

Rendered = True

Visual Attribute name = G$_NVA_TEXT_ITEM

Current Record Attribute = Data type = CHAR

Maximum Length = 99

Fixed Length = False

Required = False

Item Displayed = 0

Enabled = True

Navigable = False

Base Table Item = False

Query only = False

Primary key = False

Insert Allow = true

Query Allow = False

Update Allowed = True

Update only if Null = False

Case Insensitive Query = False

Lock Record = False

Case Restriction = Mixed

Alignment = Left

Multi-line = False

Wrap Style =None

©2018 Ellucian. Confidential & Proprietary 66

Banner Forms Architecture

Secure = False

Keep Position = False

Auto Skip = False

Reading Order = Default

Initial Keyboard state = Default

Vertical Scroll Bar = False

Hint = Name; Enter a name Last, First, Middle and press enter or tab. Use the wildcard ‘%’ if
needed.Auto Hint = True

Methods

KEY-NEXT-ITEM

The Class G$_FF_NAME_CLASS

This class displays the Name of an associated ID and allows the user to change its value and save
it the database. This class has the same attributes and methods of G$_NAME_CLASS.

The G$_DATE_CLASS Class

This class is a super class that models the treatment of date items in a form.

Attributes

Item Type = Text Item

Height = 17

Bevel = Lowered

Rendered = True

Visual Attribute Name = G$_NVA_TEXT_ITEM

Current Record Attribute =

Data Type = Date

Maximum Length = 11

Fixed Length = True

Format Mask = DD-MON-RRRR

Item Displayed = 0

Query Length = 14

Case Insensitive Query = False

Case Restriction = Upper

©2018 Ellucian. Confidential & Proprietary 67

Banner Forms Architecture

Alignment = Left

Multi-Line = False

Wrap Style = None

Secure = False

Keep Position = False

Reading Order = Default

Initial Keyboard State =Default

Vertical Scroll Bar = False

Methods

KEY-NEXT-ITEM

WHEN-NEW-ITEM-INSTANCE

POST-TEXT-ITEM

The G$_DATETIME_CLASS Class

G$_DATETIME_CLASS is a subclass that inherits attributes and methods of G$_DATE_CLASS,
where date and time is a specialization of date.

Attributes

Class = G$_DATE_CLASS

Data Type = Date

Maximum Length = 26

Query Length = 30

The G$_ICON_BTN_CLASS Class

G$_ICON_BTN_CLASS is a class used to create iconic buttons.

Attributes

Item Type = Button

Displayed = True

Width = 17

Height = 17

Visual Attribute Name = G$_NVA_BUTTON_ITEM

White on Black = False

©2018 Ellucian. Confidential & Proprietary 68

Banner Forms Architecture

Item Displayed = 0

Enabled = True

Navigable = False

Mouse Navigable = False

Access Key =

Direction = Default

Iconic = True

Default Button = False

Auto Hint = False

Methods

WHEN-MOUSE-CLICK

WHEN-MOUSE-ENTER

WHEN-MOUSE-LEAVE

The G$_FLASHLITE_BTN_CLASS Class

This is a further specialization of G$_ICON_BTN_CLASS, which specifies “Flashlight” iconic buttons.
This class is a subclass of G$_ICON_BTN_CLASS.

Attributes

Icon Name = flashlit

Implementation View

This section describes a significant portion of Banner code.

GOQOLIB

GOQOLIB is a form that is used as a repository to store triggers, blocks, windows, canvases, visual
attributes, items, and classes that can be referenced. All the triggers of GOQOLIB are embedded
into classes. Many of these triggers in turn execute procedures and functions that are stored in the
GOQRPLS library.

Changes made to the GOQOLIB will be reflected in all forms that reference it whenever they are
regenerated.

©2018 Ellucian. Confidential & Proprietary 69

Banner Forms Architecture

Fundamental methods of G$_FORM_CLASS

Fundamental Methods are triggers that must be used in any form. At runtime, form trigger can
change behavior by executing another trigger that has the same name and has as the last four
letters _TRG. This is a mechanism that changes pre-defined behavior of triggers. This mechanism is
available only in some triggers as specified below.

Pre-form trigger

The code of Pre-form trigger is member of the package G$_GOQOLIB_PP_TRIGGER and is named
as G$_GOQOLIB_PP_TRIGGER.PRE_FORM. This trigger is responsible for checking whether a user
is authorized to run a form.

PROCEDURE PRE_FORM

BEGIN

EXECUTE_TRIGGER('LOAD_CURRENT_RELEASE');

G$_CHECK_FAILURE;

EXECUTE_TRIGGER('G$_VERIFY_ACCESS');

G$_CHECK_FAILURE;

DEFAULT_VALUE('0', 'global.query_mode');

G$_FORM_STARTUP;

G$_CHECK_FAILURE;

EXECUTE_TRIGGER('PRE_FORM_TRG');

G$_CHECK_FAILURE;

END;

To add custom code to the form create a user-defined trigger with the name PRE_FORM_TRG.

Post-form trigger

The code of the trigger POST-FORM is stored in the G$_GOQOLIB_PP_TRIGGER and has the name
of G$_GOQOLIB_PP_TRIGGER.POST_FORM. This trigger is responsible for executing the shutdown
procedures of a form.

PROCEDURE POST_FORM IS

BEGIN EXECUTE_TRIGGER('SAVE_KEYS');

G$_CHECK_FAILURE;

EXECUTE_TRIGGER('POST_FORM_TRG');

G$_CHECK_FAILURE;

G$_FORM_SHUTDOWN;

©2018 Ellucian. Confidential & Proprietary 70

Banner Forms Architecture

G$_CHECK_FAILURE;

EXECUTE_TRIGGER('G$_REVOKE_ACCESS');

END;

To add custom code to the form creates a user defined trigger with the name POST_FORM_TRG.

Pre-block trigger

The code in the trigger PRE-BLOCK is stored as G$_GOQOLIB_PP_TRIGGER.PRE_BLOCK. This
trigger is responsible for populating the navigation frame and highlighting the focused block.

PROCEDURE PRE_BLOCK IS
 Curr_Block_Name VARCHAR2(60):=NAME_IN('SYSTEM.TRIGGER_BLOCK');
 Curr_Item_Name VARCHAR2(60) :=
 GET_BLOCK_PROPERTY(Curr_Block_Name,FIRST_ITEM);
 Visual_Attribute_Name VARCHAR2(60) := 'G$_NVA_ITEM_REQUIRED';
 rg_optm CONSTANT VARCHAR2(13):= 'G$_GUROPTM_RG';
 rg_id RECORDGROUP := FIND_GROUP(rg_optm);
BEGIN
--
 IF NAME_IN('SYSTEM.MODE') = 'ENTER-QUERY' THEN
 G$_NAVIGATION_FRAME.POPULATE_GUROPTM;
 ELSE
 IF NOT ID_NULL(rg_id) THEN
 IF NVL(GET_GROUP_SELECTION_COUNT(rg_id),0) > 0 AND
 NAME_IN('G$_NAVIGATION_BLOCK.GUROPTMDSPITM_1')
 IS NULL THEN
 G$_NAVIGATION_FRAME.POPULATE_GUROPTM;
 END IF;
 ELSE
 G$_NAVIGATION_FRAME.POPULATE_GUROPTM; -- covering Normal
 END IF;
 END IF;
--
 WHILE (Curr_Item_Name IS NOT NULL) LOOP
 Curr_Item_Name := Curr_Block_Name||'.'||Curr_Item_Name;
 IF (GET_ITEM_PROPERTY(Curr_Item_Name,ITEM_TYPE) = 'TEXT
 ITEM' OR GET_ITEM_PROPERTY(Curr_Item_Name,ITEM_TYPE) =
 'LIST') AND GET_ITEM_PROPERTY(Curr_Item_Name,ITEM_CANVAS)IS
 NOT NULL THEN
 SET_ITEM_PROPERTY(Curr_Item_Name,CURRENT_RECORD_ATTRIBUTE,
 Visual_Attribute_Name);
 IF GET_BLOCK_PROPERTY(Curr_Block_Name,RECORDS_DISPLAYED)> 1 THEN
 IF GET_ITEM_PROPERTY(Curr_Item_Name,BORDER_BEVEL) ='NONE' THEN
 SET_ITEM_PROPERTY(Curr_Item_Name,CURRENT_RECORD_ATTRIBUTE,
 'DEFAULT');
 ELSE
 SET_ITEM_PROPERTY(Curr_Item_Name,CURRENT_RECORD_ATTRIBUTE,
 ‘G$_NVA_HIGHLITE_TEXT');
 END IF;
 END IF;
 END IF;
 Curr_Item_Name :=GET_ITEM_PROPERTY(Curr_Item_Name,NEXTITEM);

©2018 Ellucian. Confidential & Proprietary 71

Banner Forms Architecture

 END LOOP;
--
 EXECUTE_TRIGGER('PRE_BLOCK_TRG');
 G$_CHECK_FAILURE;
END;

To add custom code to the form creates a user defined trigger with the name PRE_BLOCK_TRG.

If a PRE-BLOCK trigger needs to be placed at a block level, this trigger will function is conjunction
with the trigger PRE-BLOCK at the form level, which is part of the method of G$_FORM_CLASS.
Create the PRE-BLOCK trigger at the block level, in the property sheet of the trigger, set the CLASS
property to G$_AFTER_TRG_CLASS.

Post-block trigger

The code of the trigger POST-BLOCK is stored in G$_GOQOLIB_PP_TRIGGER.POST_BLOCK. This
trigger is responsible for the restoration of the visual attribute in a block, altered by the PRE-BLOCK
trigger.

PROCEDURE POST_BLOCK IS
 Curr_Block_Name VARCHAR2(60):=NAME_IN('SYSTEM.TRIGGER_BLOCK');
 Curr_Item_Name VARCHAR2(60):=
 GET_BLOCK_PROPERTY(Curr_Block_Name,FIRST_ITEM);
 Visual_Attribute_Name VARCHAR2(60) := 'G$_NVA_ITEM_REQUIRED';
BEGIN
 G$_TRACE_PKG.TRACE_RTN('G$_GOQOLIB_PP_TRIGGER.POST_BLOCK BEGIN');
--
 WHILE (Curr_Item_Name IS NOT NULL) LOOP
 Curr_Item_Name := Curr_Block_Name || '.' || Curr_Item_Name;
 IF (GET_ITEM_PROPERTY(Curr_Item_Name,ITEM_TYPE) = 'TEXT ITEM' OR
 GET_ITEM_PROPERTY(Curr_Item_Name,ITEM_TYPE) = 'LIST')
 AND GET_ITEM_PROPERTY(Curr_Item_Name,ITEM_CANVAS) IS NOT
 NULL THEN
 IF GET_BLOCK_PROPERTY(Curr_Block_Name,RECORDS_DISPLAYED)
 > 1 THEN
 IF GET_ITEM_PROPERTY(Curr_Item_Name,BORDER_BEVEL) =
 'NONE' THEN
 SET_ITEM_PROPERTY(Curr_Item_Name,
 CURRENT_RECORD_ATTRIBUTE,'DEFAULT');
 ELSE
 SET_ITEM_PROPERTY(Curr_Item_Name,
 CURRENT_RECORD_ATTRIBUTE,'G$_NVA_TEXT_ITEM');
 END IF;
 END IF;
 END IF;
 Curr_Item_Name :=
 GET_ITEM_PROPERTY(Curr_Item_Name,NEXTITEM);
 END LOOP;
--
 EXECUTE_TRIGGER('POST_BLOCK_TRG'); G$_CHECK_FAILURE;
END;
--

©2018 Ellucian. Confidential & Proprietary 72

Banner Forms Architecture

To add custom code to the form creates a user defined trigger with the name POST_BLOCK_TRG..

If a POST-BLOCK trigger needs to be placed at a block level, this trigger will function is conjunction
with the trigger POST-BLOCK at the form level, which is part of the method of G$_FORM_CLASS.
Create the POST-BLOCK trigger at the block level, in the property sheet of the trigger, set the
CLASS property to G$_AFTER_TRG_CLASS.

When-new-block-instance trigger

The trigger code of WHEN-NEW-BLOCK-INSTANCE is located in the trigger itself. It should always be
coupled with the user-define trigger WHEN_NEW_BLOCK_TRIGGER_INSTANCE_TRG. This trigger is
also responsible for the correct population of the navigation frame.

BEGIN
 G$_NAVIGATION_FRAME.POPULATE_GUROPTM;
 G$_CHECK_FAILURE;
--
 IF G$_NAVIGATION_FRAME.MESSAGE_WAS_DISPLAYED = 'N'
 THEN
 G$_DO_NEW_MESSAGES_EXIST;
 G$_NAVIGATION_FRAME.MESSAGE_WAS_DISPLAYED := 'Y';
 END IF;
--
 EXECUTE_TRIGGER('WHEN_NEW_BLOCK_INSTANCE_TRG');
 G$_CHECK_FAILURE;
END;

If a WHEN-NEW-BLOCK-INSTANCE trigger needs to be placed at a block level, this trigger will
function is conjunction with the trigger WHEN-NEW-BLOCK-INSTANCE at the form level, which is part
of the method of G$_FORM_CLASS. Create the WHEN-NEW-BLOCK-INSTANCE trigger at the block
level, in the property sheet of the trigger, set the CLASS property to G$_AFTER_TRG_CLASS.

LOAD_FORM_HEADER trigger

Form header information is populated by G$_LOAD_FORM_HEADER. This trigger is responsible for
the population of a standard form header block as defined in previous releases. No mechanism is
provided to change pre-defined behavior of this trigger.

PROCEDURE G$_LOAD_FORM_HEADER IS
-- populates form heading items
 itm_id ITEM := FIND_ITEM('CURRENT_USER');
BEGIN
 COPY(TO_CHAR(SYSDATE,'DD-MON-YYYY'),'CURRENT_DATE');
 COPY(TO_CHAR(SYSDATE,'HH24:MI:SS'),'CURRENT_TIME');
 COPY(NAME_IN('SYSTEM.CURRENT_FORM'),'CURRENT_FORM');
 COPY(NAME_IN('GLOBAL.INSTITUTION'),'CURRENT_INSTITUTION');
--
 IF NOT ID_NULL(itm_id) THEN
 COPY(NAME_IN('GLOBAL.USER_ID'),'CURRENT_USER');
 END IF;

©2018 Ellucian. Confidential & Proprietary 73

Banner Forms Architecture

--
 EXECUTE_TRIGGER('LOAD_CURRENT_RELEASE');
 G$_CHECK_FAILURE;
END;

When-new-record-instance trigger

This trigger is responsible for the navigation between records of the same block. It is located in the
package G$_GOQOLIB_USER_TRIGGER.WHEN_NEW_REC_INST.

PROCEDURE WHEN_NEW_REC_INST IS
BEGIN
 IF NAME_IN(‘SYSTEM.RECORD_STATUS’) = ‘NEW’ THEN
 IF NAME_IN(‘SYSTEM.CURSOR_RECORD’) <> ‘1’ THEN
 PREVIOUS_RECORD;
 MESSAGE(‘At Last Record’, NO_ACKNOWLEDGE);
 END IF;
 END IF;
END;

KEY-CLRFRM trigger

The code of the trigger KEY-CLRFRM is located in the package G$_GOQOLIB_KEY_TRIGGER and
is named G$_GOQOLIB_KEY_TRIGGER.KEY_CLRFRM. This trigger is responsible for the correct
execution of the function ROLLBACK.

PROCEDURE KEY_CLRFRM IS
BEGIN
 EXECUTE_TRIGGER('SAVE_KEYS');
 G$_CHECK_FAILURE;
 EXECUTE_TRIGGER('ENABLE_KEYS');
 G$_CHECK_FAILURE;
--
 CLEAR_FORM;
 IF NAME_IN('SYSTEM.FORM_STATUS') <> 'CHANGED' THEN
 G$_LOAD_FORM_HEADER;
 G$_CHECK_FAILURE;
 EXECUTE_TRIGGER('GLOBAL_COPY');
 G$_CHECK_FAILURE;
 IF GET_BLOCK_PROPERTY(NAME_IN('SYSTEM.CURRENT_BLOCK'),
 BASE_TABLE) IS NOT NULL THEN
 EXECUTE_QUERY;
 G$_CHECK_FAILURE;
 END IF;
 END IF;
 G$_TRACE_PKG.TRACE_RTN('G$_GOQOLIB_KEY_TRIGGER.KEY_CLRFRM END');
END;

©2018 Ellucian. Confidential & Proprietary 74

Banner Forms Architecture

KEY-NXTBLK

The code of the trigger KEY-NXTBLK is located in the package G$_GOQOLIB_KEY_TRIGGER and
is named G$_GOQOLIB_KEY_TRIGGER.KEY_NXTBLK. This trigger is responsible for forward
navigation of blocks associated with the key function next block.

PROCEDURE KEY_NXTBLK IS
 nxtblk VARCHAR2(80) :=
 GET_BLOCK_PROPERTY(NAME_IN('SYSTEM.TRIGGER_BLOCK'),NEXT_
 NAVIGATION_BLOCK);
 blkstatus VARCHAR2(20) := NULL;
BEGIN
 IF SUBSTR(nxtblk,1,2) = 'G$' THEN
 WHILE SUBSTR(nxtblk,1,2) = 'G$' LOOP
 nxtblk :=
 GET_BLOCK_PROPERTY(nxtblk,NEXT_NAVIGATION_BLOCK);
 END LOOP;
 END IF;
--
 IF nxtblk = NAME_IN('SYSTEM.TRIGGER_BLOCK') THEN
 G$_INVALID_FUNCTION_MSG;
 ELSE
 GO_BLOCK(nxtblk);
 blkstatus := GET_BLOCK_PROPERTY(nxtblk,STATUS);
 IF blkstatus = 'NEW' AND
 GET_BLOCK_PROPERTY(nxtblk,BASE_TABLE) IS NOT NULL THEN
 EXECUTE_QUERY;
 END IF;
 END IF;
END;

KEY-PREVBLK

The code of the trigger KEY-PREVBLK is located in the package G$_GOQOLIB_KEY_TRIGGER
and is named G$_GOQOLIB_KEY_TRIGGER.KEY_PREVBLK. This trigger is responsible for the
backward navigation between blocks, associated with the key previous block.

PROCEDURE KEY_PRVBLK IS
 prevblk VARCHAR2(80) :=
 GET_BLOCK_PROPERTY(NAME_IN('SYSTEM.TRIGGER_BLOCK'),
 PREVIOUS_NAVIGATION_BLOCK);
 blkstatus VARCHAR2(20) := NULL;
BEGIN
 IF GET_BLOCK_PROPERTY(prevblk,DEFAULT_WHERE) = 'key-block' THEN
 prevblk :=
 GET_BLOCK_PROPERTY(prevblk,PREVIOUS_NAVIGATION_BLOCK);
 IF SUBSTR(prevblk,1,2) = 'G$' THEN
 WHILE SUBSTR(prevblk,1,2) = 'G$' LOOP
 prevblk :=
 GET_BLOCK_PROPERTY(prevblk,
 PREVIOUS_NAVIGATION_BLOCK);

©2018 Ellucian. Confidential & Proprietary 75

Banner Forms Architecture

 END LOOP;
 END IF;
 ELSIF SUBSTR(prevblk,1,2) = 'G$' THEN
 WHILE SUBSTR(prevblk,1,2) = 'G$' LOOP
 prevblk :=
 GET_BLOCK_PROPERTY(prevblk,PREVIOUS_NAVIGATION_BLOCK);
 END LOOP;
 END IF;
--
 IF prevblk = NAME_IN('SYSTEM.TRIGGER_BLOCK') THEN
 G$_INVALID_FUNCTION_MSG;
 ELSE
 GO_BLOCK(prevblk);
 blkstatus := GET_BLOCK_PROPERTY(prevblk,STATUS);
 IF blkstatus = 'NEW' AND
 GET_BLOCK_PROPERTY(prevblk,BASE_TABLE) IS NOT NULL THEN
 EXECUTE_QUERY;
 END IF;
 END IF;
END;

KEY-EXIT

The code of the trigger KEY-EXIT is located in the package G$_GOQOLIB_KEY_TRIGGER and is
named G$_GOQOLIB_KEY_TRIGGER.KEY_EXIT. This trigger is responsible for the correct exiting
from a form.

PROCEDURE KEY_EXIT IS
BEGIN
 EXECUTE_TRIGGER('KEY_EXIT_TRG');
 G$_CHECK_FAILURE;
 COPY('','GLOBAL.VALUE');
 B2K_EXIT_FORM;
 G$_CHECK_FAILURE;
END;

B2K_EXIT_FORM

Even when the users defines their own KEY-EXIT trigger, it is strongly recommended to add the
trigger B2K_EXIT_FORM to substitute the defective Oracle Forms KEY function KEY_EXIT.

This trigger is located in the package G$_GOQOLIB_KEY_TRIGGER and is named G
$_GOQOLIB_KEY_TRIGGER. B2K_EXIT_FORM.

PROCEDURE B2K_EXIT_FORM IS
 ALERT_BUTTON NUMBER;
 CUR_ITEM VARCHAR2(61) := NAME_IN('SYSTEM.CURSOR_ITEM');
BEGIN
 G$_TRACE_PKG.TRACE_RTN('G$_GOQOLIB_KEY_TRIGGER.B2K_EXIT_FORM');
--

©2018 Ellucian. Confidential & Proprietary 76

Banner Forms Architecture

-- If in enter-query mode
--
 IF NAME_IN('SYSTEM.MODE') = 'ENTER-QUERY' THEN EXIT_FORM;
 RETURN;
 END IF;
--
-- reset the form validation
--
 IF GET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'), VALIDATION)
 = 'FALSE' THEN
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'), VALIDATION,
 PROPERTY_ON);
 END IF;
--
-- This is to force item level validation
--
-- COPY('25','SYSTEM.MESSAGE_LEVEL');
 VALIDATE(BLOCK_SCOPE);
--
-- If validation fails, ask to close form
--
 IF NOT FORM_SUCCESS THEN
 COPY('0','SYSTEM.MESSAGE_LEVEL');
--
 alert_button := SHOW_ALERT('G$_CLOSE_FORM_ALERT');
 IF alert_button = ALERT_BUTTON1 THEN
 CLEAR_MESSAGE;
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 DEFER_REQUIRED_ENFORCEMENT,PROPERTY_TRUE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION_UNIT,FORM_SCOPE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION,PROPERTY_FALSE);
 EXIT_FORM(NO_VALIDATE,FULL_ROLLBACK);
 ELSE
 RETURN;
 END IF;
 END IF;
--
 PREVIOUS_ITEM;
 COPY('0','SYSTEM.MESSAGE_LEVEL');
--
-- If no changes, just exit
--
 IF NAME_IN('SYSTEM.FORM_STATUS') = 'QUERY' THEN
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 DEFER_REQUIRED_ENFORCEMENT,PROPERTY_TRUE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION_UNIT,FORM_SCOPE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION,PROPERTY_FALSE);
 EXIT_FORM(NO_VALIDATE);
--
-- Ask to save or not
--
 ELSE
 alert_button := SHOW_ALERT('G$_EXIT_FORM_ALERT');

©2018 Ellucian. Confidential & Proprietary 77

Banner Forms Architecture

--
-- Exit saving changes
--
 IF alert_button = ALERT_BUTTON1 THEN
 COMMIT_FORM;
--
-- Commit failed, ask to close form
--
 IF NOT FORM_SUCCESS OR NAME_IN('SYSTEM.FORM_STATUS') <>
 'QUERY' THEN
 alert_button := SHOW_ALERT('G$_CLOSE_FORM_ALERT');
 IF alert_button = ALERT_BUTTON1 THEN
 CLEAR_MESSAGE;
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 DEFER_REQUIRED_ENFORCEMENT,PROPERTY_TRUE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION_UNIT,FORM_SCOPE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION,PROPERTY_FALSE);
 EXIT_FORM(NO_VALIDATE,FULL_ROLLBACK);
 ELSE
 GO_ITEM(CUR_ITEM);
 RETURN;
 END IF;
--
-- Commit worked, exit
--
 ELSE
 EXIT_FORM;
 END IF;
--
-- Exit without saving changes.
--
 ELSIF alert_button = ALERT_BUTTON2 THEN
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 DEFER_REQUIRED_ENFORCEMENT,PROPERTY_TRUE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION_UNIT,FORM_SCOPE);
 SET_FORM_PROPERTY(NAME_IN('SYSTEM.CURRENT_FORM'),
 VALIDATION,PROPERTY_FALSE);
 EXIT_FORM(NO_VALIDATE,FULL_ROLLBACK);
--
-- Don't exit.
--
 ELSE
 GO_ITEM(CUR_ITEM);
 RETURN;
 END IF;
 END IF;
END;

©2018 Ellucian. Confidential & Proprietary 78

Banner Forms Architecture

KEY-NXTKEY

Forms that are called by other forms and that have the Select function in the menu bar enabled.
They use the trigger KEY-NXTKEY to return values to the calling form by the event MOUSE-DOUBLE-
CLICK or by selecting Select on the menu bar.

The trigger code of KEY-NXTKEY is located in the package G$_GOQOLIB_KEY_TRIGGER. To add
user-define code, it should be coupled with the user-defined trigger, KEY_NXTKEY_TRG.

PROCEDURE KEY_NXTKEY IS
 curr_item VARCHAR2(61):= NAME_IN('SYSTEM.CURSOR_ITEM');
 sub_len NUMBER(10) := INSTR(curr_item,'_');
 item_name VARCHAR2(60) := SUBSTR(curr_item,1,sub_len)||'CODE';
BEGIN
 IF GET_MENU_ITEM_PROPERTY('Action.Select',ENABLED) = 'TRUE' THEN
 IF NOT ID_NULL(FIND_ITEM(item_name)) THEN
 COPY(NAME_IN(SUBSTR(curr_item,1,sub_len)||'CODE'),
 'GLOBAL.VALUE');
 END IF;
--
 EXECUTE_TRIGGER('KEY_NXTKEY_TRG');
 G$_CHECK_FAILURE;
 B2K_EXIT_FORM;
 END IF;
END;

Key blocks

If there is a key block in the form, the G$_KEY_BLOCK_CLASS is assigned to it in the property sheet.
The class G$_KEY_BLOCK_CLASS is a prototype of any key block in a form.

The properties of the key block define the key block as a non-base table block with one record only.
The triggers of the key block are responsible for the navigation within the block and the disabling of
transactional functions.

POST-BLOCK COPY(‘Y’,‘CHECK_KEYS’);

Case view

The case view is intended to provide a guide for the creation of new forms that comply with the
Banner architecture. It is recommended that any new form be cloned from the existing skeleton

©2018 Ellucian. Confidential & Proprietary 79

Banner Forms Architecture

forms that have also been updated to comply with this release architecture. The skeleton forms are
templates that are derived from the identified families of forms.

Non-inquiry forms without a key block

GTVSKEL.fmb provides the template for non-inquiry forms without a key block. In the Form Property
sheet, the CLASS is set to G$_VAL_FORM_CLASS.

The main window has G$_FS_WINDOW_CLASS class applied to its property class. If the form is
called by another form and its appearance is like a modal window, in the property sheet of the main
window, the properties MODAL and REMOVE ON EXIT need to be set to true. In addition, in the
Form Property sheet the HORIZONTAL MDI toolbar and VERTICAL MDI toolbar to need to be set to
null. The main canvas has G$_FS_WINDOW_CLASS defined as the Class in its property sheet.

The following are objects that are always referenced from the form GOQOLIB into the Object Group
node of the form:

G$_TOOLBAR G$_VAL_FORM_CLASS

If the form invokes an Option List Window, then the object G$_OPT_GROUP is referenced in the
Object Group from GOQOLIB. If the form invokes Function Base information, then the object G
$_FUNC_BASE_INFO is referenced in the Object Group from GOQOLIB.

If the form has ID and Name items on which a validation procedure is desired, then the object G
$_IDNAME_SEARCH is referenced in the Object Group from GOQOLIB.

If the form has Code and Description items on which a search mechanism is desired, then the
object G$_SEARCH is referenced in the Object Group from GOQOLIB.

Non-inquiry form with a key block

GUASKEL.fmb gives the template for non-inquiry forms with a key block. In the Form Property
sheet, the CLASS is set to G$_APPL_FORM_CLASS.

In the Block Property sheet of the key block, the CLASS G$_KEY_BLOCK_CLASS is set in the
property sheet.

The main window has G$_FS_WINDOW_CLASS class applied to its property class. If the form is
called by another form and its appearance is like a modal window, in the property sheet of the main
window, the properties MODAL and REMOVE ON EXIT need to be set to true. In addition, in the
Form Property sheet the HORIZONTAL MDI toolbar and VERTICAL MDI toolbar to need to be set to
null. The main canvas has G$_FS_WINDOW_CLASS defined as the Class in its property sheet.

The following are objects that are always referenced from the form GOQOLIB into the Object Group
node of the form:

G$_TOOLBAR G$_VAL_FORM_CLASS

If the form invokes an Option List Window, then the object G$_OPT_GROUP is referenced in the
Object Group from GOQOLIB. If the form invokes Function Base information, then the object G
$_FUNC_BASE_INFO is referenced in the Object Group from GOQOLIB.

If the form has ID and Name items on which a validation procedure is desired, then the object G
$_IDNAME_SEARCH is referenced in the Object Group from GOQOLIB.

©2018 Ellucian. Confidential & Proprietary 80

Banner Forms Architecture

If the form has Code and Description items on which a search mechanism is desired, then the
object G$_SEARCH is referenced in the Object Group from GOQOLIB.

Inquiry forms with and without a key block

GUISKEL.fmb gives the template for inquiry forms with and without a key block. Its major
characteristics are the same as the above with the following constraints: in the Form Property sheet,
the CLASS is set to G$_INQ_FORM_CLASS.

If the form has a key block then the Block Property sheet of the key block is set to the CLASS G
$_KEY_BLOCK_CLASS class.

The main window has G$_FS_WINDOW_CLASS class applied to its property class. If the form is
called by another form and its appearance is like a modal window, in the property sheet of the main
window, the properties MODAL and REMOVE ON EXIT need to be set to true. In addition, in the
Form Property sheet the HORIZONTAL MDI toolbar and VERTICAL MDI toolbar to need to be set to
null. The main canvas has G$_FS_WINDOW_CLASS defined as the Class in its property sheet.

The following are objects that are always referenced from the form GOQOLIB into the Object Group
node of the form:

G$_TOOLBAR G$_VAL_FORM_CLASS

If the form invokes an Option List Window, then the object G$_OPT_GROUP is referenced in the
Object Group from GOQOLIB. If the form invokes Function Base information, then the object G
$_FUNC_BASE_INFO is referenced in the Object Group from GOQOLIB.

If the form has ID and Name items on which a validation procedure is desired, then the object G
$_IDNAME_SEARCH is referenced in the Object Group from GOQOLIB.

If the form has Code and Description items on which a search mechanism is desired, then the
object G$_SEARCH is referenced in the Object Group from GOQOLIB.

ID and name items

To enable the search mechanism to the ID and Name items to validate IDs and names against the
SPRIDEN table, the items undertake the following steps.

Procedure

1. In the property sheet of the ID item, set the CLASS to G$_ID_CLASS.
2. In the property sheet of the Name item, set the CLASS to G$_NAME_CLASS. The Visual

Attribute on the Name item should be set to G$_NVA_TEXT_ITEM.
3. Any person form such as SOAIDEN is executed by the trigger KEY-LISTVAL, and any non-

person form such as SOACOMP is executed by KEY-CQUERY. If the ID item uses such a
triggers, its auto hint text must contain the words ‘LIST’ to reflect the trigger KEY-LISTVAL and
‘COUNT HITS’ to reflect the trigger KEY-CQUERY.

The KEY-NEXT-ITEM trigger of an ID item, contains the following procedure:

G$_IDNAME_SEARCH.ID_SEARCH(parm1);

©2018 Ellucian. Confidential & Proprietary 81

Banner Forms Architecture

where parm1 = ‘ID’
4. The KEY-NEXT-ITEM trigger of a Name item, contains the following procedure:

G$_IDNAME_SEARCH.ID_SEARCH(parm1);

where param1 = ‘NAME’

The PRE-TEXT-ITEM trigger of a Name item, contains the following procedure:

G$_IDNAME_SEARCH.DISABLE_NAME_ITEM

5. If the Name item allows free-format entry, then the CLASS assign in the Name item of the
property sheet is G$_FF_NAME_CLASS.

Code and description items

To enable the search mechanism to a Code and Description items to validate codes and
descriptions against information stored in tables, the items undertake the following steps.

About this task

State changes: If the form is a query-only form, the property ‘Update Allowed’ of the code item must
be set to FALSE.

If the Description item is associated with a database table, do not attach a property class to the
description. Otherwise, make these changes in the Description item property sheet.

Procedure

1. In the property sheet of the Code item, set the CLASS to G$_CODE_CLASS.
2. If the Code item will associate an LOV that conforms to all the following standards, the G

$_SEARCH_PATAMETERS does not need to be created as trigger under the code item

i) LOV is named like tablename_LOV.

ii) LOV table name has columns named tablename_CODE and tablename_DESC.

iii) LOVs associated record group does not have a WHERE clause.

If the above conditions are NOT met, then the user-defined trigger G$_SEARCH_PARAMETERS
at the Code item level must be created. This trigger will have the following code:

G$_SEARCH.PARAMETERS (‘param1’, ‘param2’, ‘param3’); where

param1 = database column name from the validation table for code

param2 = database column name from the validation table for description

param3 = WHERE clause from the record group associated with the LOV (optional)
3. The KEY-NEXT-ITEM trigger, contains the following procedure:

G$_SEARCH.CODE_KEY_NEXT_ITEM;
4. The POST-TEXT-ITEM trigger, contains the following procedure:

G$_SEARCH.POST_TEXT_CODE;

©2018 Ellucian. Confidential & Proprietary 82

Banner Forms Architecture

5. The WHEN-NEW-ITEM-INSTANCE trigger, contains the following procedure:

G$_SEARCH.CODE_WHEN_NEW_ITEM_INST;
6. The WHEN-MOUSE-DOUBLECLICK trigger, contains the following procedure:

G$_SEARCH.WHEN_MOUSE_CLICK;
7. To create functionality to be executed by the event right button mouse click, create under the

Code item the trigger G$_SEARCH_OPTIONS.

If a displayable description item is associated to a code item and the description item is not
associated to a database table, then the class G$_DESC_CLASS needs to be assigned to the
‘Class’ attribute of the description item. Furthermore, the Visual Attribute ‘Default’ must be
assigned.

Dates

Items of data type DATE need to undertake the following steps.

Procedure

1. To create an item of type date, assign the property CLASS G$_DATE_CLASS.
2. To create an item of data type DATETIME, assign the property CLASS G$_DATETIME_CLASS.
3. Set the default value in the property sheet of the item to $$DBDATE$$.

Iconic button

Iconic buttons are buttons that has the G$_ICON_BTN_CLASS assigned to the class property of the
button. It also has the Icon Name set to one of the names from the general/icon directory.

Flashlight Button- itemname_btn

Flashlight buttons are a type of iconic button that has the icon name set to flashlit

©2018 Ellucian. Confidential & Proprietary 83

Banner Forms Architecture

Check box, radio group

For check boxes and radio groups, if the item is a database field, the name of the radio groups or
check boxes will be the item name. If not database fields, follow the naming conventions above. The
visual attribute needs to be set to ‘Default’ in the property sheet of the check box or radio group.

Menu bar options

The Menu Bar is an Oracle built-in residing at the top of the MDI window. It is an attribute of a form.
It contains Options that allow navigation between blocks and forms, and it performs queries and
calculations.

The Options are displayed by block and they are keyed-in using the GUAOPTM form. Its code is
enclosed in the G$_NAVIGATION_FRAME package. The following is a list of relevant procedures
that must be used by the user to manipulate Options:

Disabling an option

G$_Navigation_Frame.Disable_Option(parm1, parm2)

Where parm1 = Called Object field in GUAOPTM Form

parm2 = Type Indicator field in GUAOPTM Form

Enabling an option

G$_Navigation_Frame.Enable_Option(parm1, parm2)

Where parm1 = Called Object field in GUAOPTM Form

parm2 = Type Indicator field in GUAOPTM Form

Changing the label text of an option

G$_Navigation_Frame.Set_Description(parm1, parm2, 'string')

Where string specifies the label of the option

parm1 = Called Object field in GUAOPTM Form

parm2 = Type Indicator field in GUAOPTM Form

Reading the label text of an option

G$_Navigation_Frame.Get_Description(parm1, parm2)

Where parm1 = Called Object field in GUAOPTM form

parm2 = Type Indicator field in GUAOPTM form

©2018 Ellucian. Confidential & Proprietary 84

Banner Forms Architecture

For more information on Unified Modeling Language, please see the following references:

1. Jesse Liberty, Beginning Object-Oriented Analysis and Design with C++, Wrox Press Ltd, UK,
1998

2. Scott W. Ambler, The Unified Modeling Language v1.1 and Beyond: The Technique of Object-
Oriented Modeling, White Paper modified from Building Object Application That Works,
Cambridge University Press, 1998

3. Object-Oriented Programming Concept: A Primer, unknown, White Paper, 1999
4. Pierre-Alain Muller, Instant UML, Wrox Press Ltd., UK, 1997

Standards for forms

This section describes the Banner design and navigation standards currently in use.

Naming conventions

Canvas - description_canvas

Button - description_btn

Standard buttons:

<window>_exitvalue_btn <window>_rollback_btn <window>_save_btn
<window>_exit_btn

Note: The sequence number from the conversion is the forms 3.0 page number.

LOV Button - field-name_lbt

Non-LOV buttons may also have a suffix of '_lbt' to take advantage of the standard code in the
WHEN_BUTTON_PRESSED trigger. The button must be associated with an item with the same name
as the button. The button name would include the '_lbt' at the end. Example: The ID item might
have a button named ID_LBT.

Record Group - description_rg

Note: LOV and Record groups may retain the name they are converted with, which may not
conform to standards. These objects may be replaced by referenced objects.

Window Name - description_window or root_window

Alert Window - description_alert

Check Box - description_cbox (see Note below)

Radio Group - description_radio (see Note below)

Note: For check boxes and radio groups, if the item is a database field, the name of the radio
groups or check boxes will be the item name. If not database fields, follow the naming conventions
above.

©2018 Ellucian. Confidential & Proprietary 85

Banner Forms Architecture

Visual cues

A number of institutions prefer to customize Banner forms. However, this may make it difficult to
know if the form being displayed is the delivered version or the custom version.

Modification ID

To help you identify your custom forms, you can set up Banner to display a modification ID number
in brackets on the title bars.

About this task

Note: This feature does not perform version control of any kind; it merely identifies the form as
being custom.

The modification number also appears on the About Banner Form (GUAABOT).

Procedure

1. Access the General User Preferences Maintenance Form (GUAUPRF).
2. Select the Display Release Number on Title Bar check box, if it has not been selected

already.
3. Save your changes.

Note: The modification number will not appear on the title bars if you clear the check box on
GUAUPRF. However, it will still appear on GUAABOT.

4. In the form in which you want to enable this feature:
a) Add a text_item to the FORM_HEADER block.
b) Name this text_item MOD_ID.
c) Set the Enabled Property of MOD_ID to No.
d) Set the Max Length to 16.
e) Provide a value from 1 to 16 alphanumeric characters for the FORM_HEADER.MOD_ID in the

form-level trigger LOAD_CURRENT_RELEASE.
5. Save your changes.

The value you entered will appear in the title bar of that form and on GUAABOT.

Instance name

The instance name will appear on the window bar in all windows. The instance name will be
enclosed in parenthesis one space after the release number. The release number should be entered

©2018 Ellucian. Confidential & Proprietary 86

Banner Forms Architecture

on each root window title as boilerplate. (Refer to the Windows section of this document for more
information.)

The G$_SET_INST_PROPERTY procedure is in the WHEN-WINDOW-ACTIVATED trigger and
will manipulate the window title by adding the eight-character instance name to the end.
Load_current_release_trigger contains the release number.

Forms with key information will have a solid line after the key information to distinguish it from the
data block. The line should be drawn with the solid line (1 point width) on the tool bar and extend the
full width of the form.

Guideline

When a window includes only one block other than the key information, a block title is not needed
for the data block.

Where there are multiple blocks on a window, center the name of the block in mixed case, and
enclose in a box. The box should be a solid line with 1 pt width.

Note: The solid lines extending from the titles should be drawn with the solid line on the tool bar,
1 pt width. The lines should be centered with the text using the Align Vertical function under the
Arrange option in the layout editor.

The form title, centered and in mixed case, appears in the window bar with the seven character
mnemonic in upper case followed by the release number. The eight-character instance name is
added after the window information and enclosed in parenthesis. Root window format - Centered
and in mixed case: Form Title (Mnemonic^release number)^(instance name). For example:

Person Identification Form (SPAPERS 6.0) (SEED)

Non-root window titles will have the same format replacing the form name with the window title in
mixed case. The rest of the title bar is in the same format as the root window bar. For example:

Address (SPAIDEN 6.0) (SEED)

Windows should have one blank line at the top and bottom and one space on each side if possible.
This applies to both root and secondary windows. There is one exception; the words “Confidential”
and “Deceased” may appear in the top line.

Standard full-size window size is 473 x 328. There may be exceptions to this rule. An exception
might be a form that is frequently called and it would be helpful to keep the calling form visible.

Non-full screen windows should be centered under the key information and be context sensitive. For
those windows where this is not appropriate, discretion should be used to appropriately place the
window to not overlay pertinent information. For example, you may not want to overlay the window
bar on the root window that contains the form name. Likewise, it may be appropriate to always
display the key information.

Non-full screen windows should be smaller than the root window where possible. If they need to be
almost full size, make them 473 wide to fit inside the boundaries of the root window.

©2018 Ellucian. Confidential & Proprietary 87

Banner Forms Architecture

Helpful hints

When a form that is called from another form needs to be sized so that it does not overlay the
key information of the calling form, the canvas of the called form that is to be resized cannot be
associated with the root window.

If the desired canvas is associated with the root window, it will overlay the entire calling form.

Blocks

Block property sheet values.

Key Mode Unique_Key

Locking Mode Immediate

Recs Buffered Twice the number displayed.

Navigational Style Same_record (default, change if necessary).

Key Information Key information will exist on the root window of
each application form where appropriate. The
key information may be overlaid with windows if
space is needed or the key information data is
not pertinent to the active windows.

Block Title Block titles should identify the data being
displayed; however, unlike previous Banner
standards, the word 'block' should not appear in
the block title.

Scroll bars

Scroll bars should be on the right side of the form. They should be two characters wide. If they
correspond to a boxed area, the scroll bar should be inside the box on the right hand side.

The length of the scroll bar should start at the first row and extend to the last row that scrolls. It
should not go beyond rows being displayed. However, if the number of rows displayed is two or
less, the scroll bar should extend up into the column heading to display the indicator button on the
scroll bar.

Scroll bars on validation forms should start in position 450 and be two characters wide.

Navigation

The key information items should be disabled after the cursor leaves the key
information. This is accomplished through the DISABLE_KEYS trigger executed in the
WHEN_NEW_BLOCK_INSTANCE_TRG. The Rollback function must be pressed/selected to re-enter

©2018 Ellucian. Confidential & Proprietary 88

Banner Forms Architecture

the key information. Re-enable items/buttons in the key information through the ENABLE_KEYS
trigger executed in the KEY_CLRFRM trigger.

The Rollback function should close any windows that are open through a user defined
CLOSE_WINDOWS trigger executed in the KEY_CLRFRM trigger. The root window is an exception and
should remain open. Other windows may also be an exception, however, data in ALL open windows
must be cleared when the cursor is in the key information.

Using the WHEN_WINDOW_ACTIVATED_TRG trigger, each form must include code to move the
cursor to a newly activated window and out of a closed window because of character mode. The
cursor should go into the first enterable item in the window or the item that is “clicked” into to
activate the window.

The next_item trigger on the last item of a window and the PREVIOUS_ITEM trigger on the first item
in a window should keep the cursor within the window. There may be exceptions to this to allow the
user to tab out of the window.

Text items

Numeric items should use an edit mask with dollar signs, a decimal point, and commas where
appropriate and space allows. The edit mask is entered on page two of the item property sheet.
These items should also be right justified.

Abbreviations should be eliminated and the tags spelled out where possible striving for consistency
throughout each product and the system.

Some standard tag changes for international clients:

• Change State to State/Prov

• Change ZIP code to ZIP/PC (for Postal Code)
• Change SSN to SSN/SIN/TFN

• Change 1099 Id to Tax ID

These changes need to be reflected in dynamic help and auto help.

Item tag names that appear to the left of items should be left aligned. (This is a change from
the previous Banner standard.) Display and text items should be aligned where possible for
aesthetically pleasing “windows”. Tag names that appear at the top of a column should be centered
over that column (with no colon) as space permits.

Tag names to the left of a text item should include a colon. Tag names on the top of columns should
not include a colon.

Text/Display items should be at least one space apart.

Boxes should be used to group data items at the product's discretion. If boxes are used to group
data items, boxes with square corners should be used. Rounded corners do not show in character-
mode.

Boilerplate that is to the left of a text item should be centered vertically with the item using the Align
function on the property layout sheet. Column headings should also be centered with other column
headings on the same line and centered above the column itself.

©2018 Ellucian. Confidential & Proprietary 89

Banner Forms Architecture

Check boxes, radio groups, pull down lists

This section explains the use of check boxes, radio groups, and pull down lists.

Check boxes

Check boxes should be used when there are two obvious choices where only one box is needed.

Example:

Confidential would be selected for yes or cleared for no. Active would be selected for active or
cleared for inactive. If the field is required, a default value must be specified.

Indicators on validation forms that have two obvious choices should be made into check boxes if
appropriate. Autohelp needs to be modified appropriately. Change the tag to be indicative of what
the selected box means and change the auto help to say check for xxxxx.

Example:

In Advancement, an indicator is selected if the code indicates an alumni. The tag should be
Alumnus, the auto help should be changed to Alumnus; check for alumnus.

Check boxes should be three characters wide.

Radio groups

Radio groups should be used with <= 3 exclusive choices.

Check boxes/radio group tags

Check boxes/radio group tags should be boilerplate and not the label associated with the item.
Using the associated label does not adopt the color of the background making the entire item,
including labels, all white.

The recommended placement of tags on check boxes and radio groups is to the right of the option
button or check box. The tag or check boxes must be placed up against the check box. This may be
changed where appropriate.

Pull-down lists

Pull-down lists should be used when there are more than three exclusive choices. The list size
should be three larger than the length of the label for character mode.

A null value in a pull-down list should be represented by the word none with parentheses around it
(None). None by itself may be a valid selection. Any extra blank lines in the pull down lists should
be removed.

©2018 Ellucian. Confidential & Proprietary 90

Banner Forms Architecture

Buttons

The text within a button should be in mixed case. Exception examples: If OK or ZIP/PC, is used, it
should be in upper case.

All buttons need to be expanded two characters greater than the label text to allow for character
mode parenthesis.

Buttons that appear on the top of a column should not include a colon.

Buttons should be aligned vertically as appropriate. Buttons that are aligned vertically (in a column)
should be the same size. This applies to LOV buttons as well.

Application specific buttons added to the button control block on the same line as the standard
buttons should appear immediately to the left of the standard buttons. Application specific buttons
may be larger than 10 if needed.

Button properties

Displayed - On

Enabled - On/Off (as appropriate)

Navigable - Off (Oracle's initial default is On)

Auto Hint - Off

Mouse Nav. - Off (Oracle's initial default is On)

Default Btn - On/Off (as appropriate)

Iconic - Off

LOV/LOV buttons

The tag for an item that has LOV available should be the LOV button itself.

LOV buttons for a repeating block should reside in the block with the LOV field rather than the
button control block. The button needs to be added only one time and will repeat with each row.

LOV buttons that appear to the left of the item should contain the tag, followed by a colon and
enough spaces to left justify the tag, with one space between the button and the LOV field. If the
tag fits into the button with no extra spaces, add two additional characters to the width for character
mode. Add spaces to the end of the label to left-justify the tag within the button.

Example:

If the LOV button is six characters and the tag is State: the button should be increased to eight
characters State: for formatting. The button should be one space away from the LOV item.

An LOV should have the following properties:

Auto confirm - On

Auto display - Off

©2018 Ellucian. Confidential & Proprietary 91

Banner Forms Architecture

Menus

Oracle has supplied a default menu to be used with Forms. The Oracle default menu has been
enhanced for Banner applications by the addition of the Options selection on the menu bar, the
addition of “Dynamic Help,” “About Banner,” and “Display Image” under the Help selection, and
“Banner”, “Direct Access,” “QuickFlow,” and a “Close” selection for character mode under Action.

The custom Banner menu is gumappl.mmx. The navigation frame contains an Options selection.
The Options menu selection features:

• All accessible windows (except for the main window), external forms, and other processes.
Because there are several ways to return to the root window (rollback, previous block, and
window menu pick), the main window should not be included in the menu.

• If triggers are created for menus, the trigger to be executed should reside in the form with the
standard name MNU_XXX_YYY_ZZZZZ, where MNU_ identifies the trigger as a menu trigger,
and standard XXX_YYY_ZZZZZ is free-form text which clearly identifies the menu being called
or executed.

Example of user-defined triggers for menu selections:

MNU_OPT_FRM_SPAPERS MNU_OPT_WIN_ADDR MNU_OPT_PRO_ADMIN

Not all menu options will have corresponding function keys such as Options and Help. The main
window should not appear as an option in the menu.

Any form level navigation represented as a button added to the form should also be added to the
options selection bar menu. (See Option menu below regarding the GUROPTM table for further
instructions.)

Some previously-available options were eliminated from the Options menu on some forms. These
changes were made because VGA display for Windows allows only 24 options per data stack and
no scrolling feature exists. In creating custom options, any items with a sequence number that
begins with 1 are considered internal to the form, and appear above the dotted line. Items with any
other number are external to the form and appear below the dotted line. A maximum of 23 items can
appear.

An option under the HELP menu selection was added to replace the form header, “About Banner”.
This option activates a window which displays the full institution name that used to appear in the
form header and the current release number.

Menu property sheet values:

Type - Plain or Separator

Cmd - Menu for sub-menu picks

Null for separator

PL/SQL for others

©2018 Ellucian. Confidential & Proprietary 92

Banner Forms Architecture

Helpful hints

When calling a form from another form, use G$_secured_form_call so that role security is invoked.

The block name and description for all blocks in the form were inserted into GUROPTM. If there was
only one item in the block the entry was determined to be a call to a form. If there was more than
one item in the block the entry was deemed a navigable block. In this case the first item in the block
was put into the table as the “go to” item.

GUROPTM Fields

GUROPTM_SORT_SEQ Sort sequence number using decimals to
provide a sort within groups Blocks and windows
start with 1.x, form calls with 2.x, and processes
with 3.x.

GUROPTM_TYPE_IND Type indicator - (W)indow, (B)lock, (F)orm, (P)for
trigger, (L) Form with Select turned off.

GUROPTM_FORM_NAME Current form name.

GUROPTM_NAME1 Name of form, window, block, process to invoke
or navigate to.

GUROPTM_NAME1_DESC Description for NAME1 that appears in the
menu. The format is the process being done.
Example: Add an ID.

GUROPTM_NAME2 Name of item to navigate to if NAME1 is block or
window. This must be in the form of block.item
because the procedure issues a GO_ITEM to get
there.

GUROPTM_CAPACITY For forms only, type of call - (M)aintenance or
(Q)uery.

GUROPTM_TRG_NAME For processes, enter the name of the trigger
to be executed. It can be a user defined
trigger or a built-in. Only gets executed if
GUROPTM_TYPE_IND = 'P'.

GUROPTM_TRG_TYPE Type of trigger TRG_NAME is - (U)ser
named or (B)uilt-in. If set to 'U' then an
EXECUTE_TRIGGER will be executed for
TRG_NAME, otherwise it will do a DO_KEY for
TRG_NAME.

GUROPTM_BLOCK_VALID If valued, this entry will only show up ONLY
when the cursor is positioned in the block with
this name.

Note: The code for the menu procedures is in the checklist notes.

©2018 Ellucian. Confidential & Proprietary 93

Banner Forms Architecture

Review your data using the GUAOPTM form and the make necessary corrections. Remove
the entry for the key information. Entries must be added/corrected for “internal” (windows) and
“external” (forms and processes) items as needed.

Miscellaneous notes

Table owners need to be removed when referencing tables and views in triggers. Owner names
need to be used for referencing procedures.

Each product must modify the LOVs in their xOQOLIBs to make the column heading tag names
more friendly. Activity date may display without centuries.

Create custom Banner forms

Follow this checklist when creating custom Banner forms.

Procedure

1. Name your form following the Banner object naming standards. See the Banner Getting Started
Guide for the detailed standards for 7-character Banner object names.

2. Follow the coding standards described in this chapter.
3. Make sure to include the correct calls to Banner Security (see “Modifying Local Forms” in the

Banner Security Administration Handbook.)
4. Create the form object and place it in the correct file path. (See “Directory Structure” in Chapter

1 of this manual.)
5. Next you must define the form to Banner using the GUAOBJS form. Make an entry for the new

object and give it a name, description, type, system indicator, and so on. See Banner Online
Help for details on GUAOBJS.

After you have defined the form in GUAOBJS, you will be able to access it through the Direct
Access field in Banner without getting this error: Invalid object name entered.

6. Define the form as a new object in Banner Security. See the Banner Security Administration
Handbook.

7. Grant security access to the object to one or more user IDs or classes. See the Banner Security
Administration Handbook.

8. Set up FGAC restrictions for the new object, or exempt it from FGAC processing if desired. See
the Banner Data Security Handbook for details.

9. Use GUTGMNU to update Banner menus to add the new form, if desired. See the Banner
General User Guide for details.

10. Log into Banner with a user ID that has security access to the new object and test access to the
object.

©2018 Ellucian. Confidential & Proprietary 94

Banner Forms Architecture

Guidelines for Updating Forms for Banner 8.0

Every baseline Banner form was updated and redelivered for Release 8.0 to support new
Internationalization standards and new product-wide features. If you are manually updating a 7.x
form, follow this checklist to make sure that your form conforms to Banner 8.0 standards.

Create an 8.0 Audit Trail Entry

In the form’s audit trail, create a new entry for version 8.0.

Modify the load_current_release trigger

Modify the load_current_release trigger for a current release of 8.0.

Check WHEN-NEW-RECORD-INSTANCE

If your form has a WHEN-NEW-RECORD-INSTANCE with a hierarchy property of OVERRIDE, change
the hierarchy property to AFTER.

This change is necessary so that your form will work with the new Supplemental Data Engine.

Add Support for Tooltips

Banner 8.0 introduces support for tooltips on data fields where the data values may be too long to
fully display in the field.

Check each text item on your form. If an item has a class of G$_GRADE_CODE_CLASS, G
$_CODE_CLASS, G$_ID_CLASS or G$_NAME_CLASS it will automatically inherit the tooltip feature.
If a text item does not have one of those four classes, then add one of the following classes:

• For a normal, single-line field, add G$_CHAR_FIELD_CLASS
• For a multiline text field, add G$_CHAR_MULTILINE_FIELD_CLASS

Observe Standards for Field Lengths

For Banner 8.0, new standards were established for fields containing certain kinds of data, and
many fields were expanded to match these new standards.

Check the fields in your form to see if any of these length standards apply.

Field Standard Length for Banner 8.0 Forms

First Name (_FIRST_NAME) 60

Middle Name (_MI) 60

Last Name Prefix (_SURNAME_PREFIX) 60

©2018 Ellucian. Confidential & Proprietary 95

Banner Forms Architecture

Field Standard Length for Banner 8.0 Forms

Last Name (_LAST_NAME) 60

Legal Name (_LEGAL_NAME) 500

House Number (_HOUSE_NUMBER) 10

Street Address Line 1 (_STREET_LINE1) 75

Street Address Line 2 (_STREET_LINE2) 75

Street Address Line 3 (_STREET_LINE3) 75

Street Address Line 4 (_STREET_LINE4) 75

City (_CITY) 50

ZIP (_ZIP) 30

Country Code (_CTRY_CODE_PHONE) 4

Area Code (_PHONE_AREA) 6

Telephone (_PHONE_NUMBER) 12

Extension (_PHONE_EXT) 10

E-mail Address (_EMAIL_ADDRESS) 128

SSN (_SSN) 15

Any field that holds currency values 17,2

Currency Conversion Rate (_CONV_RATE) 17,7

©2018 Ellucian. Confidential & Proprietary 96

Online Internal Processing

Online Internal Processing
Online Internal Processing

This section discusses the online internal processing.

Global variables

A global variable can store a character string value of any length. Global variables can be used
to store data values outside the blocks of a form, especially to pass information from one form to
another when one form calls another form.

All global variables have the format GLOBAL.var_name where var_name is a valid Oracle object
name. GLOBAL.var_name is never interpreted as a reference to a block called GLOBAL.

Global variables do not have to be explicitly declared or defined; they are established when either
the COPY or DEFAULT command is used or direct assignment is used to assign a value. For
example, the following command assigns the value of N to the variable GLOBAL.INITF:

#COPY ’N’ GLOBAL.INITF := 'N'

Global variables remain defined for the duration of an Oracle Developer Forms session, or until the
#ERASE command is used to remove them.

The GUAINIT form establishes the General global variables along with any product-specific globals
for each product currently installed. The following are some of the General global variables that
GUAINIT establishes:

GLOBAL.CURRENT_DATE Current Date. Default is
TO_CHAR(SYSDATE,'DD-MON-YYYY').

GLOBAL.CURRENT_TIME Current Time. Default is TO_CHAR(SYSDATE,
'HH24:MI:SS').

GLOBAL.CURRENT_USER Current User. Default is USER system variable.

GLOBAL.HELP_CALL_FORM Help Call Form. Default is GUAHELP.

GLOBAL.HOSTCMD Host Commands. Host commands to be
submitted. (Only valid in character mode.)

The following global variables are established when Dynamic Help is requested:

GLOBAL.HELP_BLOCK Help Block. Current block in which the cursor
resides when Dynamic Help is called.

GLOBAL.HELP_FIELD Help Field. Current field in which the cursor
resides when Dynamic help is called.

GLOBAL.HELP_FORM Help Form. Current form in which the cursor
resides when Dynamic Help is called.

©2018 Ellucian. Confidential & Proprietary 97

Online Internal Processing

GLOBAL.INDEX Index. Dynamic Help index indicator, default is H
for Help.

The following global variable is established when exiting a validation form by using the “exit with
value” option:

GLOBAL.VALUE Value. Value of the Validation Table Code
returned by the Exit with Value key.

General global variables

The global variables for Banner General are stored in GUAINIT.FMB. This is the form that is
triggered whenever a user starts Banner. The global variables used in the session are unique for
that user.

How PIDMs and IDs are generated

A PIDM (person identification master) is Banner's unique identifier for a person (or non-person
entity) known to the system. For data integrity, it is important that the one-to-one correspondence
between PIDMs and persons is maintained.

Before Release 7.0, Banner generated new PIDMs and other IDs with the SOBSEQN table and
its associated routines. When a new PIDM was needed, Banner selected and updated the current
number from SOBSEQN to get the next available number. This approach, originally designed to
handle PIDMs, has been extended to accommodate other types of IDs and transactions.

The introduction of the Banner Messaging Gateway application, which processes incoming
messages and calls multiple Banner APIs within a single Oracle transaction, increased the
likelihood that the SOBSEQN table would be locked (in the middle of generating a PIDM for
another user) when needed. The locking problem resulted in the failure to produce synchronization
messages from a message-enabled form.

In Release 7.0, the SOBSEQN method of incrementing PIDMs and IDs was replaced by another
method to accomplish the same function. A new Identification API handles inserting new IDs and
PIDMs into the SPRIDEN table. The Identification API uses Oracle sequences to determine the next
available number for the ID or PIDM.

This approach eliminated the locking contention problem and greatly improved system performance.
When a sequence is defined, it can be accessed and incremented by multiple users with no waiting.
The Oracle sequence does not need to complete the previous transaction before the sequence can
be incremented again. This allows for nearly simultaneous transactions for all users.

ID_SEQUENCE is the Oracle sequence that generates unique identification numbers such as
SPRIDEN_ID. PIDM_SEQUENCE generates unique internal identification numbers such as
SPRIDEN_PIDM. Two scripts, gos_id_seq.sql and gos_pidm_seq.sql, create the new Oracle
sequences.

Note that using sequence generators may cause gaps in the sequence if an application
selects .NEXTVAL and subsequently fails to store it.

©2018 Ellucian. Confidential & Proprietary 98

Online Internal Processing

The Oracle Application Developer's Guide explains how to manage sequences.

To select the next value from the sequence and increment it you can:

Select PIDM_SEQUENCE.NEXTVAL from dual;

To examine the next value without incrementing it:

Select PIDM_SEQUENCE.CURRVAL from dual;

You must drop and recreate the sequence to change the starting number.

During the 7.0 upgrade process, the current values on the SOBSEQN table will be used as the initial
settings for the new sequences.

There are two functions, F_GENERATE_ID and F_GENERATE_PIDM, in the GB_COMMON package,
to manage generating new IDs and PIDMs. All forms and processes that create new SPRIDEN
records call the P_CREATE procedure in the GB_IDENTIFICATION package. P_CREATE in turn
calls F_GENERATE_ID or F_GENERATE_PIDM as needed.

F_GENERATE_PIDM, when called, will select the next number from PIDM_SEQUENCE, then check to
see if that PIDM is already in use in SPRIDEN. If it is, it continues to select the next number until it
reaches a number not in use. This self-corrects for any discrepancies between the sequence’s next
available number is and what is actually stored in SPRIDEN. Therefore, using F_GENERATE_PIDM
will eliminate the Duplicate Generated PIDM error.

Fill gaps in PIDM or ID number series

When some schools initially bring up Banner, they assign historical records to a series of ID
numbers, for example, 1 through 200000. Then, they reset the sequence numbers to some higher
number, for example, 1000000, so old records are easily identified by the ID number range, and a
gap exists between the highest old number and the lowest new number.

About this task

It is possible to use the new sequence to fill in any historical gaps left in a PIDM or ID number
series. For example, to fill gaps in a series of ID numbers:

Procedure

1. Drop ID_SEQUENCE.
2. Recreate ID_SEQUENCE with a starting number of 1
3. Create the next SPRIDEN record using any Banner 7.0 application.

All Banner applications call the F_GENERATE_ID function (and F_GENERATE_PIDM, of course)
when a new person record is created. The function will run its sequence generator up through
all the existing numbers until it encounters the gap and return a valid unused number. This
may take some time on the very first record created, but after that the system will continue
incrementing the numbers and filling in any gaps.

©2018 Ellucian. Confidential & Proprietary 99

Online Internal Processing

The SOBSEQN method used in release 6.x

In Banner 6.x (and prior versions), IDs and PIDM numbers were generated when needed by using
one-up numbers from the Banner Sequence Number Table (SOBSEQN). This table stores the
maximum sequence number currently used so that the next available number can be determined.

SOBSEQN was used to generate sequence numbers for IDs and PIDMs and for many other
purposes in Banner, including receipts and alumni gifts. The various sets of numbers are
distinguished by SOBSEQN's Function column.

When a new ID or PIDM was needed, Banner retrieved the Maximum Sequence Number for the
specified function and added one to the number. The result was stored in the Maximum Sequence
Number column so Banner was ready to generate the next sequence number. If a sequence
number prefix was used (such as for generated IDs), this value was also retrieved from the
SOBSEQN table and concatenated with the sequence number.

With Release 7.0, SOBSEQN is no longer used to generate IDs and PIDMs, but the table will still be
used to maintain sequence numbers for other functions.

Banner libraries

Banner libraries contains procedures used in Banner products.

GOQOLIB

GOQOLIB contains procedures used in multiple forms across the Banner products. It is used as
a library repository to store referenced triggers, blocks, windows, canvases, visual attributes, and
items.

These procedures used in conjunction with the GOQRPLS PL/SQL library contain the building
blocks for the Banner system. The procedures are referenced into the source code and become
part of the programs. Changes made to the GOQOLIB will be applied to all programs when they are
regenerated.

Banner uses Referenced Procedures so that commonly executed logic can be maintained in one
location rather than be repeated in multiple forms. Procedures that are used by multiple Banner
systems are found in the library and are listed below.

GOQRPLS

The GOQRPLS PL/SQL library includes the following procedures.

Name Function

G$_ADD_TO_PERSONAL_MENU Adds the current form to a user’s personal
menu.

©2018 Ellucian. Confidential & Proprietary 100

Online Internal Processing

Name Function

G$_B2K_WIN_HELP This is a package used to determine whether
help exists and how to display it.

G$_BLOCK_EXISTS Checks if a block exists.

G$_BTN_PRESSED Executes built-in subprogram associated with
appropriate button.

G$_BUILD_FULL_NAME Builds name to support ID field validation.

G$_BUTTON_PROC This is a generic button procedure. It reads
the NAME of the button and performs a
DO_KEY(item_name).

G$_CHECK_ACCESS This is a new function to check whether a user is
authorized to access a program/process through
job submission.

G$_CHECK_FAILURE Procedure that checks for form success.

G$_CHECK_IF_DUP_PIDM Checks for duplicated PIDM.

G$_CHECK_QUERY_MODE Procedure that sets global to 1 if the form is in
query mode; else 0.

G$_CHECK_STATUS_QUERY Used to check whether the most recently
executed built-in has succeeded (COMMIT_FORM
OR POST).

G$_CITY_STATE_NATN Defaults city, state, nation, and country codes
when a ZIP/PC code is entered.

G$_CITY_STATE_NATN2 This function is similar to above function but it
also set the Global.Zip value for subsequent call
to the GTVZIPC form.

G$_CITY_STATE_NATN3 Defaults city, state, nation, and country codes
when a ZIP/PC code and city are entered.

G$_CHECK_VALUE Procedure that checks passed string for null
values.

G$_COMPRESS_WORK_NAME Returns a compressed name field in all
uppercase without spaces or punctuation except
for the '%', which allows the field to be used in
queries. Function can be passed any character
field.

G$_CONVERT_ETHNICITY_CODE Supports race/ethnicity processing.

G$_COPY_FLD_ATTR Procedure which copies a field’s x and y
coordinates to globals.

G$_CREATE_METADATA Retrieves the current window's title, form name,
and release number.

©2018 Ellucian. Confidential & Proprietary 101

Online Internal Processing

Name Function

G$_DATA_EXTRACT Extracts data from a form.

G$_DATE_CALL_GUACALN Supports entering date data from the calendar.

G$_DATE_NEXT_ITEM Retrieves the next item for a date field.

G$_DATE_POST_ITEM Used by date fields which require G
$_DATE_REFORMAT function to insure proper
date validation.

G$_DATE_REFORMAT Reformatting date.

G$_DATE_WHEN_NEW_ITEM Used by date fields which require G
$_DATE_REFORMAT function.

G$_DECEASED_WARNING Pops the warning alert for a person who is
deceased.

G$_DEF_VIEW Sets up the view for pop-up window.

G$_DETERMINE_CURSOR_LOCATION Used in multi-window forms to locate the cursor.

G$_DETERMINE_ERASE_GLOBAL Erases any globals created by the G
$_DETERMINE_CURSOR_LOCATION procedure.

G$_DETERMINE_WIN_NOT_PREV_ACTV Used in multi-window forms where window
to window navigation has no restrictions.
This function is called from procedure G
$_DETERMINE_CURSOR_LOCATION.

G$_DISPLAY_ALERT Generic call to display an alert window.

G$_DISPLAY_ERR_MSG Displays errors passed back from database
routines.

G$_DISPLAY_IMAGE Displays a stored image file associated with an
ID through the GUAIMGE form.

G$_DISPLAY_LOV Displays appropriate List Of Values window for
the current field and allows the return of the
selected value to the calling field.

G$_DO_NEW_MESSAGES_EXIST Procedure to check the message table and
display a message if the users received a new
message since the last time they were notified.

G$_DO_WIN_ACTIVATED Determine whether or not to execute the
remainder of the logic in the when-window-
activated trigger based on a form-specific global
variable.

G$_DUPLICATE_PIDM Checks for duplicate PIDM.

G$_ENV_IS_CHARMODE This function returns TRUE in a non-GUI,
character-mode environment.

©2018 Ellucian. Confidential & Proprietary 102

Online Internal Processing

Name Function

G$_ENV_IS_GUI This function returns TRUE in a Graphical User
Interface environment.

G$_ENV_IS_MAC This function returns TRUE in a Macintosh
environment.

G$_ENV_IS_MOTIF This function returns TRUE in a MOTIF
environment.

G$_ENV_IS_WEB This function returns TRUE in a Internet-native
environment.

G$_ENV_IS_WEB_UNIX This function returns TRUE in a UNIX Internet-
native environment.

G$_ENV_IS_WINDOWS This function returns TRUE in a Windows
environment.

G$_ENV_IS_WINDOWS3X This function returns TRUE in a Windows 3.x
environment.

This will be made obsolete in a future release.

G$_ENV_IS_WINDOWS95 This function returns TRUE in a Windows95
environment.

G$_ENV_IS_WINDOWS98 This function returns TRUE in a Windows98
environment.

G$_ENV_IS_WINDOWS9x This function returns TRUE in a Windows95 or
Windows98 environment.

G$_ENV_IS_WINDOWSNT This function returns TRUE in a Windows NT
environment.

G$_ERRORS This function populates public variables.

G$_F5_NAVIGATION Offers navigation options when F5 key is
pressed.

G$_FIND_WINDOW_ID This function returns the ID of the current
event's window.

G$_FORMS_NLS Package supports international date formats.

G$_FORM_SHUTDOWN This procedure contains the common
commands to be executed at form shutdown.

G$_FORM_STARTUP This procedure contains the common
commands to be executed at form startup.

G$_FUNC_BASE_INFO This procedure is called within the General
Product Events Module forms (GEATASK,
GEAPART, GEAFCOM) to bring up a window of
base function information from GEAFUNC.

©2018 Ellucian. Confidential & Proprietary 103

Online Internal Processing

Name Function

G$_GET_MAIN_WINDOW_TITLE Retrieves the title of the main window.

G$_GET_PIPE_MESSAGES This procedure checks for Electronic Approvals
messages through the use of a dbms pipe
named as the Oracle username. It alerts the
user to how many transactions they have
pending.

G$_GET_RW_ATTRIBUTES Determines attributes of the root window.

G$_GET_SET_LOCAL_DIR Used in Job Submission and Graphics modules
to define a user's operating system profile,
including their default local directory.

G$_GET_UPRF_BUTTON_COLOR Checks user preferences for button color.

G$_GET_UPRF_CANVAS_COLOR Checks user preferences for the form canvas
color.

G$_GET_UPRF_CM_FORMS Checks user preferences for common matching.

G$_GET_UPRF_CODE_PROMPT_COLOR Checks user preferences for the code prompt
color.

G$_GET_UPRF_CONF_ALERT Checks user preferences for alerts that
information is confidential.

G$_GET_UPRF_DATAEXTRACT Checks user preferences for data extract
routines.

G$_GET_UPRF_DEAD_ALERT Checks user preferences for alerts that a person
is deceased.

G$_GET_UPRF_DE_MIME_TYPE Checks user preferences for the type of file to be
created in the data extract process.

G$_GET_UPRF_DE_PROMPTS Checks user preferences for whether to include
column headings in data extract files.

G$_GET_UPRF_DUP_SSN_ALERT Checks user preferences for whether or not to
display an alert for a duplicate Social Security
Number.

G$_GET_UPRF_EXIT_ALERT Checks user preferences for a prompt before
exiting Banner.

G$_GET_UPRF_HELP Checks user preferences for the location of
online help.

G$_GET_UPRF_IMAGE_DIR Checks user preferences for the location of
images.

G$_GET_UPRF_LINKS_CANVAS_COLOR Checks user preferences for the canvas color of
links.

©2018 Ellucian. Confidential & Proprietary 104

Online Internal Processing

Name Function

G$_GET_UPRF_LINKS_DESC1 Checks user preferences for the text of “My
Links” item 1.

G$_GET_UPRF_LINKS_DESC2 Checks user preferences for the text of “My
Links” item 2.

G$_GET_UPRF_LINKS_DESC3 Checks user preferences for the text of “My
Links” item 3.

G$_GET_UPRF_LINKS_DESC4 Checks user preferences for the text of “My
Links” item 4.

G$_GET_UPRF_LINKS_DESC5 Checks user preferences for the text of “My
Links” item 5.

G$_GET_UPRF_LINKS_DESC6 Checks user preferences for the text of “My
Links” item 6.

G$_GET_UPRF_LINKS_MY_INST Checks user preferences for “My Institution” link.

G$_GET_UPRF_LINKS_PROG1 Checks user preferences for the URL or
destination of “My Links” item 1.

G$_GET_UPRF_LINKS_PROG2 Checks user preferences for the URL or
destination of “My Links” item 2.

G$_GET_UPRF_LINKS_PROG3 Checks user preferences for the URL or
destination of “My Links” item 3.

G$_GET_UPRF_LINKS_PROG4 Checks user preferences for the URL or
destination of “My Links” item 3.

G$_GET_UPRF_LINKS_PROG5 Checks user preferences for the URL or
destination of “My Links” item 4.

G$_GET_UPRF_LINKS_PROG6 Checks user preferences for the URL or
destination of “My Links” item 6.

G$_GET_UPRF_MSG_CANVAS_COLOR Checks user preferences for the canvas color
of the broadcast message window of the main
menu.

G$_GET_UPRF_PROMPT_COLOR Checks user preferences for the color of popup
windows.

G$_GET_UPRF_RECORD_COLOR Checks user preferences for the color of
highlighted records.

G$_GET_UPRF_SCROLLBAR_COLOR Checks user preferences for the color of
scrollbars.

G$_GET_UPRF_SEPARATOR_COLOR Checks user preferences for the color of
separators.

G$_GET_UPRF_STARTUP_MENU Checks user preferences for the default
expanded menu.

©2018 Ellucian. Confidential & Proprietary 105

Online Internal Processing

Name Function

G$_GET_UPRF_TREE_CANVAS_COLOR Checks user preferences for the canvas color of
the menu tree.

G$_GET_UPRF_VALUE Supports other user preference functions by
retrieving the specific user preference value,
or institutional preference value if no user
preference value exists.

G$_GET_UPRF_WEBBKSHLF Checks user preferences for the location of the
Bookshelf.

G$_GET_UPRF_WEBHLP Checks user preferences for the location of web
help.

G$_GET_UPRF_WEBOUTPUT Checks user preferences for the web server
database location for database procedure
execution.

G$_GET_UPRF_WEBRPT Checks user preferences for the location of
reports on the web.

G$_GET_UPRF_WEBRPT_SERVICE Checks user preferences for the report service
name for RUN_REPORT_OBJECT.

G$_GET_WIN_PROPERTY This procedure returns the Height, Width, and
Position of the current window.

G$_GOQOLIB_FUNC_INFO_BLOCK Displays basic function information (i.e., from
GEBFUNC) on event forms (i.e., GEATASK,
GEADART).

G$_GOQOLIB_KEY_TRIGGER This defines the standard key functions, such as
Key_Up and Key_Exit.

G$_GOQOLIB_OPT_BLOCK This defines commonly used option block
procedure.

G$_GOQOLIB_PP_TRIGGER This defines commonly used pre/post form
triggers.

G$_GOQOLIB_USER_TRIGGER This defines commonly used key functions.

G$_GUAHELP Procedure to call GUAHELP.

G$_GUAMENU_CHECK_SET Disables the Select button and menu item when
the form is called from GUAMENU.

G$_HELP_SETUP Sets global for use in GUAHELP form.

G$_IDNAME_SEARCH Package used for the new ID/Name search
logic.

G$_IMG_DRIVER Supports Banner Document Management Suite
(BDMS) activities invoked from within Banner.

©2018 Ellucian. Confidential & Proprietary 106

Online Internal Processing

Name Function

G$_INS_UPD_LOCAL_DIR Routine to insert/update the user's profile for
print destination.

G$_INVALID_FUNCTION_MSG Shows message for key strokes that are not
valid.

G$_INVOKE_CM Checks whether the user is required to use the
Common Matching form (GOAMTCH) when
creating an ID, and brings up GOAMTCH if
required.

G$_KEY_OPT_MENU Invokes the key option list window.

G$_LAST_TEN This updates the Globals used to populate the
Last 10 Forms list under the Action item in the
Menu Bar.

G$_LIST_VALUES_CALL This procedure calls the appropriate 'TV'
validation form for the current item.

G$_LIST_VALUES_COPY Copies the value back from 'TV' form.

G$_LOAD_FORM_HEADER Copies the heading information.

G$_MASKS Determines if masking rules exist for a form.

G$_MENU_BAR Routines to set the menu settings.

G$_MOUSE_DOUBLECLICK Determine the type of item that the cursor is
currently on and launch the appropriate action
when the mouse button is double-clicked.

G$_NAVIGATION_FRAME Package containing all of the logic for
establishing and executing the options in the
navigation frame.

G$_NCHK Function which performs a null value check on a
passed value.

G$_NVA_SET_BUTTON Determines the button color.

G$_NVA_SET_CANVAS Determines the canvas color.

G$_NVA_SET_ITEM Determines the item color.

G$_NVA_SET_KEY_BLOCK Determines the key block color.

G$_NVA_SET_PROMPT Determines the prompt color.

G$_NVA_SET_PROMPT_CODE Determines the prompt code color and style.

G$_NVA_SET_RECORD Determines the highlighted record color.

G$_NVA_SET_SCROLLBAR Determines the scrollbar color.

G$_NVA_SET_SEPARATOR_LINE Determines the separator color.

G$_NVA_SET_WINDOW Determines the window color.

©2018 Ellucian. Confidential & Proprietary 107

Online Internal Processing

Name Function

G$_POPULATE_ATVGIFT_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_ETHNICITY_LIST Populates the list of ethnicity codes.

G$_POPULATE_FTVACCI_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVACCT_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVACTV_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVATYP_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVCOAS_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVCTYP_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVFUND_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVLOCN_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVORGN_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVPROG_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVPROJ_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_FTVRUCL_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_GXRDIRD_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_GXVBANK_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_ROIAIDY_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POPULATE_TBBDETC_LOVD Populates the dynamic/run time version of the
Record Group.

G$_POP_UP_MENU Populates and clears popup menus.

©2018 Ellucian. Confidential & Proprietary 108

Online Internal Processing

Name Function

G$_QUERY_ONLY_ROLE Determines if the current form is running in
query-only mode.

G$_QUICKFLOW Launches and executes a QuickFlow.

G$_READ_METADATA Retrieves metadata for the current form.

G$_RECONNECT Reestablishes database connection if possible.

G$_RESET_GLOBAL Resets the global variables for pop-up windows.

G$_RESET_VIEW Resets the position for pop-up windows.

G$_RESIZE_WEB_WINDOW Resizes browser windows that are too small.

G$_RESYNCH_RECORD Calculates and resynchronizes a block’s activity
date to prevent date-related errors with APIs.

G$_SEARCH Package used with the new code/description
search mechanism.

G$_SEARCH_WHERE Package used with the new code/description
search mechanism.

G$_SECURED_FORM_CALL Performs secured form calls.

G$_SECURED_FORM_CALL_PL Performs secured form calls.

G$_SEL_SOBSEQN_MAXSEQNO Returns the current sequence number in table
SOQSEQN for the sobseqn_function
argument.

G$_SEL_SPRIDEN_ID Returns the current ID for the PIDM argument
passed when invoked.

G$_SEL_SPRIDEN_ID_NAME Replaced by G$_VALID_ID.

G$_SEL_SPRIDEN_PIDM_NAME Replaced by G$_VALID_ID.

G$_SETITEM Disables or enables an item when passed an
item name that is not valid.

G$_SETMENU Disables or enables an menu item.

G$_SET_INST_PROPERTY Displays the instance name in window title bar.

G$_SET_USER_PREFERENCES Stores user preference values.

G$_SET_WIN_PROPERTY This procedure is now null.

G$_SHOW_MENU This procedure is now null.

G$_SHOW_MENU_BKSHLF Displays bookshelf when called from menu item.

G$_STARTUP Start-up trigger for validation form.

G$_TIMER_EXP Handles the options timer and the bubble help
timer.

©2018 Ellucian. Confidential & Proprietary 109

Online Internal Processing

Name Function

G$_TOOLBAR Executes the appropriate task associated with
the setting of the toolbar.

G$_TRACE_PKG Routine which is used for debugging purposes.

G$_UPDATE_ACTIVITY_DATE Updates the activity date column in the table
associated with the current block.

G$_VALIDATE_FIXED_LENGTH Checks the length of fixed-length data fields.

G$_VALID_ALL_ID Validates person and non-person, and checks
for deceased and confidential flags.

G$_VALID_ID Validates person.

G$_VERIFY_ID_EXISTS Checks for the existence of a specific ID.

G$_VPDI The main package supporting Virtual Private
Database Indicator (VPDI) processing.

G$_VPDI_TRIGGER Executes baseline VPD procedures.

G$_WALK_FORM Walks through all items in all blocks of a form.

G$_WEB_SHOW_DOCUMENT Creates a web document and displays it in a
separate browser window.

G$_WIN_ACTIVATED Executes G$_SET_INST_PROPERTY and G
$_SET_WIN_PROPERTY.

G$_WIN_CLOSED Closes the event window.

G$_WIN_DEACTIVATED This procedure is now null.

G$_WRITE_BLOCK Writes the records from a block to a flat file.

GOQCLIB

To maintain consistency, Banner’s identification forms all reference a Banner library called the
Common Forms Object Library (GOQCLIB). This library is a form object, but it is not accessed
directly by users. Instead, GOQCLIB is used to store common form elements that are displayed on
the General Person Identification Form (SPAIDEN) and many other forms.

The common elements found in GOQCLIB are detailed in Chapter 12, “Basic Person,” of the Banner
General User Guide.

Workflow Banner Adapter Library (GOQWFLW)

Banner forms are delivered with a live library called GOQWFLW, the single repository for all
baseline, cross-product Banner Workflow functionality available within Banner when it is invoked
from Banner Workflow. To guarantee that the required Workflow functionality can be accessed within

©2018 Ellucian. Confidential & Proprietary 110

Online Internal Processing

each form, this library is attached to every baseline Banner form that is defined as a component to
Banner Workflow.

Oracle Advanced Queuing

Oracle Advanced Queuing (AQ) is Oracle's message broker implementation that supports
asynchronous messaging. AQ is the preferred technology supporting application integration,
because it provides database-integrated message queuing.

AQ provides a store and forward capability that guarantees the successful delivery of messages to
interested applications. The applications do not need to be running when a Banner Event is created
to receive the message triggered by the Event.

Banner uses Oracle AQ because it has the flexibility to support any asynchronous communication
with systems external to Banner and is a feature that is included with Oracle Enterprise Edition. AQ
eliminates the need for a proprietary message broker.

The Banner Event architecture uses Oracle AQ to store Banner Event messages. These are XML
messages that describe an event that has occurred in Banner. Interested applications may consume
Banner Event messages and act on them.

The Banner Entity API (package gb_event) generates event messages when an entity is created,
updated, and deleted. In the future, other Banner APIs may also generate Banner Events to indicate
that a specific business process has occurred.

AQ is required for LDI (Luminis Data Integration) version 1.1 for e-Procurement, and also for
OpenEAI-based integrations. In the future, other applications may require AQ functionality for
integrations with Banner.

AQ support is provided by Banner General 6.2.2, an optional release which supports LDI (Luminis
Data Integration) version 1.1 for e-Procurement. Release 7.0 introduces the Banner General objects
that support Banner Events, and Release 7.1 includes modifications to several of the general
objects to support LDI version 1.1 for e-Procurement. Releases 7.0 and 7.1 require Oracle 9.2.0.4.
Oracle 9.2.0.5 is required to fully implement Banner Events.

Clients must configure Oracle AQ only if using LDI for e-Procurement version 1.1 messaging
integration or any future Banner certified messaging integration.

Note: The gb_event package does not contain a hard-coded reference to the Oracle AQ queue
names, so this package will compile without errors if AQ is not configured. However, if events are
enabled system-wide on the GUAINST form (gubinst.gubinst_message_enabled_ind) and
enabled for the specific event through the GURMESG form, and Oracle AQ is not configured, a run-
time error will occur when attempting to store a Banner Event XML message to Oracle AQ.

If you are setting up Oracle AQ, it requires a separate tablespace, which must be named BANAQ.
This is because of a documented restriction on AQ under Oracle 9i. An Oracle persistent queue's
data is stored in a table that is mapped to a tablespace. The tablespace used to store the Oracle
table will not be able to provide tablespace point-in-time recovery. The gb_advq_util package will
expect a tablespace named BANAQ when creating the queues and queue tables.

©2018 Ellucian. Confidential & Proprietary 111

Online Internal Processing

For more information on setting up Oracle AQ for LDI for e-Procurement, see Banner AQ Bridge for
LDI for e-Procurement 1.1 Installation and Configuration Guide and Banner AQ Connection for LDI
for e-Procurement 1.1 Configuration Guide.

Large Object storage

Release 7.3 introduced centralized Large Object (LOB) storage for Banner applications using a new
table, GORBLOB, and a new API, gb_large_object. Large Object storage enables users to store
files, such as Portable Document Format (PDF) documents, in the database.

This feature will initially be used by Banner Accounts Receivable’s eBill functionality, and by
the Banner e-Print product. You may use the gb_large_object API for other purposes, but
those uses are not currently supported. For institutions interested in building their own secured
applications that handle Large Objects, we recommend reading Oracle Application Developer's
Guide - Large Objects (LOBs) before working with the gb_large_object API and GORBLOB
table.

Note: The 7.3 release does not support files being displayed in a RAC (Real Application Clusters)
environment from INB.

Considerations for building custom applications

You must consider the following factors for building custom applications.

Store internal LOBs

To use internal LOBs, you must create a separate tablespace for temporary LOB processing. It is
recommended that you make your temporary LOB tablespaces extendable.

The General 7.3 installation included creating a Large Object tablespace named BANLOB, with
Autoextend On by default. If you do not expect to load large objects into the database at this time,
you can change the default 1000M allocation for this tablespace to a smaller number.

Store BFILEs

While we support both internal LOBs and BFILEs, it is strongly recommend that you store your
data as internal LOBs. (For the eBill enhancement, you will make this decision when you store

©2018 Ellucian. Confidential & Proprietary 112

Online Internal Processing

the Statement files.) There are many issues with storing files in the file system that should be
understood before choosing the BFILE option.

Choose between internal LOBs and BFILEs

Large object data can consume large amounts of disk space. The disk space will be used
regardless of whether the LOB data is managed inside the database or outside on the file system.

However, internal LOB storage provides many features such as:

• Transaction recovery--LOB data is committed and rolled back like any other data.
• Backup--LOB data is backed up and restored like any other data in the database.
• Security--Security is provided by the baseline Banner security rather than server file system

security.
• Space management--The LOB data can be managed in a separate tablespace specifically

allocated for this purpose.

BFILE storage is an option for clients who require the data to be stored outside the database, but
who need to access it from within the database. The interface provided by the gb_large_object
package makes the physical storage location of the data transparent to the application program.

If you choose to use BFILE storage, carefully consider these issues:

• FILE locators do not participate in database exports. In other words, only the locator is exported,
not the data.

• The data in the file system is read-only, so BFILEs cannot be updated.
• When an application purges index data from its local table (i.e. TBBSTMT), rather than delete the

corresponding GORBLOB row, it will flag that row for later deletion if the data is stored as BFILE.
The file system file is not deleted. Only the GORBLOB record is flagged as deleted. The purging
of the file system files is a system administration task. The system administrator will then have
to use a script similar to the following script to identify and delete the file system file, and then go
back and delete the GORBLOB rows.

/*This is a sample script you might use if you are storing large
objects as BFILES, and the application has flagged the GORBLOB record
for deletion.

Once you run this and obtain the list of files no longer being
referenced by the application, remove them from the file system, and
then delete the gorblob rows.*/

set serveroutput onDECLARE

lv_file_name VARCHAR2(100);

BEGIN

FOR purged_bfiles in (

SELECT gorblob_media_id

FROM gorblob

WHERE gorblob_bfile IS NOT NULL

©2018 Ellucian. Confidential & Proprietary 113

Online Internal Processing

AND gorblob_deleted = 'Y') LOOP

lv_file_name:=
gb_large_object.f_get_bfile_location(purged_bfiles.gorblob_media_id);

dbms_output.put_line('rm '||lv_file_name);

END LOOP;

end;

/

©2018 Ellucian. Confidential & Proprietary 114

Upgrade Assistance

Upgrade Assistance
Upgrade Assistance

This section discusses the upgrade details.

Upgrade Modification History/Maintenance (GUASMOD)

This form was delivered to help you apply Banner releases. It displays script names and
descriptions that are associated with a specific release. It is particularly useful for determining the
step at which the gostage process failed.

The form is normally used in query-only mode, displaying the status of the modifications. However,
you can also use the form to modify the SQL used during the upgrade or to update the modification
history table (GURDMOD).

GUASMOD is run outside the Banner menu structure. You must be logged in as upgrade_owner
with the appropriate password to access this form. You must also have access to the GUVMODS
view. The view create script is in the file general/plus/guovmods.sql.

Warning! Before you modify anything using GUASMOD, be sure you understand the gostage
process and know the implications of the changes you are making.

The PC from which you invoke this form must be IBM-compatible with Oracle Forms (Runform)
Version 10g and SQL*Net installed.

The path for the Oracle Forms Runform must be able to locate Banner and GUASMOD. The form
can be generated by the scripts general/misc/genform2.bat or genform2.shl.

GUASMOD shows the state of the material currently loaded into the GUBSMOD and GURSSQL
tables through the import command done in step 4 of the upgrade guide.

• GUBSMOD, the database modification header table, contains one row per modification for the
release you are currently applying. It may contain rows from previously releases, if the release is
cumulative.

• GURSSQL, the database modification SQL repeating row table, contains the SQL commands
used to apply the upgrade. It contains one row for each line of text of every database
modification script in GUBSMOD. There are one or more GURRSQL rows for each GUBSMOD
row.

©2018 Ellucian. Confidential & Proprietary 115

Upgrade Assistance

Stage Modification History

This form displays all the scripts in the database driver and indicates if they have been applied or if
they are pending. This is actually from a view, GUVMODS, that does an outer join of the GUBSMOD
and GURDMOD tables.

All these fields are display-only.

Field Description

Modification Modification identifier. This will become
the key in the Modification History Table
(GURDMOD). It must be in the form RELEASE
NUMBER.modcode. This field is case-sensitive.

Function Indicates if a modification is being applied, or if
a test is being made to see if a modification was
previously made. Valid values are AP, PT, or PC.

Object Description or Banner object that is affected by
the script.

Comment A description of what the script does.

Status Indicates if the modification has been installed.
Valid values are Applied and Not Applied.

Owner The Oracle ID that normally owns the object and
will apply the modifications.

Date The date that the modification was successfully
applied.

©2018 Ellucian. Confidential & Proprietary 116

Upgrade Assistance

Stage Modification Maintenance Header/Detail

This form has header and detail blocks.

Header

This displays the modification description row from the GUBSMOD table. This is an updateable
block, but it should not ever need to be modified.

Field Description

Release The code that represents the release number.

Modification Code The modcode section of the row’s unique
identifier, RELEASE NUMBER.modcode.

Environment For future use.

Product Sequence Represents which product the modification
belongs to. The number specifies the order in
which the products are loaded. For example,
because the General product must be installed
before any other upgrades, all the modifications
for General have a Product Sequence of 1.

Application Sequence Indicates the line number in the script. Use
Insert Record to add a blank row to the script
(the sequence numbers will be updated
automatically).

Function Indicates if a modification is being applied, or if
a test is being made to see if a modification was
previously made. Valid values are AP, PT, or PC.

Object Description or Banner object being modified by
the script.

Default Owner Banner owner that owns the object. The default
owner will run the database modification script.

©2018 Ellucian. Confidential & Proprietary 117

Upgrade Assistance

Field Description

Comment Brief description of the modification.

Detail

This displays the contents of the script that you highlighted in the previous window. The rows are
from the GURRSQL table which contains the SQL that will be applied to the database.

You can alter the script that will be used to apply the modification. If you have local modifications,
use this window to add or delete a step and then apply your local modification.

Field Description

Sequence Line number in modification code script.

Statement Text of the line in modification code script.

Stage Modification History Details Window

The GURDMOD records, if any exist, show when each modification was applied and the
corresponding product owners.

You can make changes to the data in this block. It serves two purposes:

1. You can delete the records that shows that the modification was applied. This does not undo
the modification. If you cannot rerun the modification or it was never applied to this instance,
removing this record will cause gostage to fail. If you delete the record, the modification will be
executed again.

2. You can create a modification history record for a modification that was applied to the instance
but not properly recorded in the GURMOD table. It will not cause any step to be executed. You
must construct the record carefully, based on information in the GUBSMOD block. The Code
field must be the release number in upper case, a dot, and the modification code in lower case
(e.g., E060100.eaag60100). The Applied By field must contain the Oracle ID that owns the
object. The rest of the fields can be entered using information from the GUBSMOD block.

©2018 Ellucian. Confidential & Proprietary 118

Upgrade Assistance

Field Description

Code Key for the history table. The case-sensitive
format is RELEASE NUMBER.modcode.

Modification Date Date the database modification was applied.

Applied By Banner owner that applied the modification.

Object In most cases, the name of the object being
modified. For documentation only.

Description Brief description of the modification.

©2018 Ellucian. Confidential & Proprietary 119

Banner Integration

Banner Integration
Banner Integration

This chapter discusses the objects outside the General product that are shared with the other
Banner products.

Common tables

The following is a list of all common tables that are shared by all products within Banner.

Table Description

PTRTENR Faculty Member Tenure Status Code Table

SHBCOMI Committee Information Table

SHBCRMY Ceremony Information Table

SHRCOMC Committee Comments Table

SHRCOMM Committee Information Table

SIBCFTE Faculty Work load Contract FTE Rule Table

SIBFACD Faculty Information Table

SLBBLDG Location/Building Description Table

SLBEVNT Event Base Table

SLBRDEF Room Description Table

SLRBCAT Room Category Definition Table

SLRBCMT Building Comments Table

SLRBDEF Building Attributes Definition Table

SLRCMNT Building/Room Comments Table

SLRCOLC Room Attributes Collector Table

SLRECMT Events Comments Table

SLRRASG Room Assignment Table

SLRRDEF Room Attributes Definition Table

SLRRUSE Room Usage Restriction Table

SOBSBGI Source/Background Institution Base Table

SOBSEQN Sequence Number Base Table

SORBACD Source/Background Institution Academic
Repeating Table

©2018 Ellucian. Confidential & Proprietary 120

Banner Integration

Table Description

SORBCHR Source/Background Institution Characteristics
Repeating Table

SORBCMT Source/Background Institution Comments
Repeating Table

SORBCNT Source/Background Institution Contact Person
Repeating Table

SORBDEG Source/Background Institution Degrees Offered
Repeating Table

SORBDMO Source/Background Institution Demographics
Repeating Table

SORBDPL Source/Background Institution Diplomas Offered
Repeating Table

SORBETH Source/Background Institution Ethnic Make-up
Repeating Table

SORBTST Source/Background Institution Test Score
Repeating Table

SORCONC Prior College Concentration Area Repeating
Table

SORDEGR Prior College Degree Table

SORFADR Fin. Aid Data Reconciliation Table

SORGEOR Geographic Region Rules Table

SORMAJR Prior College Major Repeating Table

SORMINR Prior College Minor Repeating Table

SORPCOL Prior College Table

SPBPERS Basic Person Base Table

SPRADDR Address Repeating Table

SPRCOLR Person Collector Table

SPREMRG Emergency Contact Repeating Table

SPRHOLD Person Related Holds Repeating Table

SPRIDEN Person Identification/Name Repeating Table

SPRTELE Telephone Table

SSBSECT Section General Information Base Table

SSRMEET Section Meeting Times Repeating Table

SSRXLST Cross List Section Repeating Table

©2018 Ellucian. Confidential & Proprietary 121

Banner Integration

Table Description

STVACAT Award Category Validation Table

STVACCG Activity Category Validation Table

STVACTC Student Activity Validation Table

STVACTP Activity Type Validation Table

STVACYR Academic Year Validation Table

STVADMR Admission Request Code Validation Table

STVASCD Room Assignment Status Code Validation Table

STVASRC Address Source Code Validation Table

STVASTY Assignment Type Validation Table

STVATYP Address Type Validation Table

STVBCHR Background Institution Characteristics Validation
Table

STVBLDG Building Code Validation Table

STVCAMP Campus Validation Table

STVCIPC CIP Code Validation Table

STVCITZ Citizen Type Validation Table

STVCNTY County Code Validation Table

STVCOLL College Validation Table

STVCOMF Committee Function Code Table

STVCOMS Committee Status Code Table

STVCOMT Committee Type Code Table

STVDAYS Day of Week Validation Table

STVDEGC Degree Code Validation Table

STVDEPT Department Validation Table

STVDISA Disability Type Validation Table

STVDLEV Faculty Member Degree Level Validation Table

STVDPLM Diploma Type Validation Table

STVEMPT Employment Type Validation Table

STVETCT IPEDS Ethnic Validation Table

STVETHN Ethnic Code Validation Table

STVETYP Event Type Validation Table

©2018 Ellucian. Confidential & Proprietary 122

Banner Integration

Table Description

STVFCNT Faculty Contract Type Validation Table

STVGEOD Geographic Region Division Validation Table

STVGEOR Geographic Region Validation Table

STVHLDD Person Hold Type Validation Table

STVHOND Degree Honors Validation Code Table

STVHONR Academic History Departmental Honors
Validation Table

STVINIT Recruiting Initials Code Validation Table

STVLANG Native Language Validation Table

STVLEAD Leadership Validation Table

STVLEVL Student Level Validation Table

STVLGCY Legacy Code Validation Table

STVMAJR Major, Minor, Concentration Validation Table

STVMATL Recruiting Material Code Validation Table

STVMDEQ Medical Equipment Code Validation Table

STVMEDI Medical Code Validation Table

STVMRTL Marital Status Validation Table

STVNATN Nation Validation Table

STVORIG Originator Validation Table

STVPENT Port of Entry Validation Table

STVPRCD Phone Rate Code Validation Table

STVPTYP Person Type Validation Table

STVRDEF Building/Room Attributes Validation Table

STVRELG Religion Code Validation Table

STVRELT Relationship Validation Table

STVRMST Room Status Code Validation Table

STVRRCD Room Rate Code Validation Table

STVSBGI Source/Background Inst Validation Table

STVSITE Site Validation Table

STVSPON International Sponsor Validation Table

STVSPSR Disability Type Validation Table

©2018 Ellucian. Confidential & Proprietary 123

Banner Integration

Table Description

STVSTAT State Code Validation Table

STVSUBJ Subject Validation Table

STVTELE Telephone Type Validation Table

STVTERM Term Code Validation Table

STVTESC Test Score Validation Table

STVTRMT Term Type Validation Table

STVVTYP Visa Type Code Validation Table

Common Objects

The following is a list of common objects shared by all products.

Script Name Object

aofacon.sql f_alumni_constituent_ind function

aofaorn.sql f_alumni_organization_ind function

aoffrdn.sql f_alumni_friend_ind function

comview.sql driver script to compile all common views

foffagn.sql f_finance_agency_ind function

foffban.sql f_finance_bank_ind function

foffcun.sql f_finance_customer_ind function

foffden.sql f_get_finance_desc function

foffemn.sql f_finance_employee_ind function

foffmgn.sql f_finance_manager_ind function

fofforn.sql f_get_special_finance_desc function

foffven.sql f_finance_vendor_ind function

fofusrn.sql f_finance_user_ind function

pofhapn.sql f_payroll_applicant_ind function

pofhben.sql f_payroll_beneficiary_ind function

pofhcbn.sql f_payroll_cobra_ind function

pofhemn.sql f_payroll_employee_ind function

pofheon.sql f_get_eeoc_description function

©2018 Ellucian. Confidential & Proprietary 124

Banner Integration

Script Name Object

ptrtenr.fmb Tenure Code Rule Form

rofrapn.sql f_finaid_applicant_ind function

rofratn.sql f_fa_amt_term_func function

rofrayn.sql f_fa_amt_uear_fun function

rofrcsn.sql f_sem_csed_fun function

rofrden.sql f_finaid_get_desc function

rofrfcn.sql f_family_contrib_fnc function

rofrfin.sql f_family_income_fnc function

rofrian.sql f_inst_aid_fnc function

rofrpcn.sql f_parent_contrib_fnc function

rofrpyn.sql f_authorized_payments function

shacomi.fmb Committee/Service Form

shicmbq.fmb Committee/Service Member Inquiry Form

shicmid.fmb Committee/Service by Person Inquiry Form

shicomq.fmb Committee/Service Inquiry Form

shvcomi.sql Committee Query View

shvcomm.sql Committee Member Query View

slabldg.fmb Building Definition Form

slabqry.fmb Building Query Form

slaevnt.fmb Event Form

slardef.fmb Room Definition Form

sliaevn.fmb Event Available Room Query Form

slqbcat.fmb Building Category Query Form

slqevnt.fmb Event Query Form

slqroom.fmb Room Query Form

soacomp.fmb Non Person Search Form

soaddrq.fmb Address Summary Form

soageor.fmb Geographic Region Rules Forms

soahold.fmb Hold Information Form

soaiden.fmb Person Search Form

soaigeo.fmb Geographic Regions by ID Form

©2018 Ellucian. Confidential & Proprietary 125

Banner Integration

Script Name Object

soaqgeo.fmb Geographic Region Query Form

soasbgi.fmb Source/Background Institution Base Form

sofsadn.sql f_student_admissions_ind function

sofsapn.sql f_applied_for_degree function

sofscdn.sql f_get_class_desc function

sofscln.sql f_class_calc_fnc function

sofsden.sql f_student_get_desc function

sofseln.sql f_enrolled_this_term function

sofsern.sql f_student_enrollment_ind function

sofsfan.sql f_student_faculty_ind function

sofsgrn.sql f_graduated_from_institution function

sofsgsn.sql f_student_gen_students_ind function

sofshcn.sql f_get_hsch_code function

sofshin.sql f_high_school_rowid function

sofshon.sql f_student_housing_ind function

sofsrcn.sql f_student_recruit_ind function

sofsren.sql f_student_registration_ind function

sofsrgn.sql f_registered_this_term function

sofstdn.sql f_sgbstdn_fields function

sofstrn.sql f_student_transfer_work_ind function

sofstsn.sql f_get_sortest_rowid function

sofstun.sql f_get_sgbstdn_rowid function

soisbgi.fmb Source/Background Institution Query Only Form

soqhold.fmb Holds Query Only Form

soqmenu.fmb Student Menu Form

sovcolp.sql Prior College Information View

sovconc.sql Prior College Concentration Area Information
View

sovdegr.sql Prior College Degree Information View

sovgeor.sql Geographic Region View

sovmajr.sql Prior College Major Information View

©2018 Ellucian. Confidential & Proprietary 126

Banner Integration

Script Name Object

sovminr.sql Prior College Minor Information View

sovsbgr.sql Source/Background Institution Base Information
View

spvaddf.sql Address Hierarchy View for FOCUS

spvaddi.sql Addresses for BannerQuest View

spvaddr.sql Address Hierarchy Selection View

spvadds.sql Address Hierarchy View

spvcurr.sql Current PIDM, ID, and Name Information View

spvintl.sql Person International Information View

spvmedi.sql Person Medical Information View

ssamatx.fmb Building/Room Schedule Form

ssvmeet.sql Section Meeting Time View

stkcomf.sql Cursor stvcomfc

stkcoms.sql Cursor stvcomsc

stkcomt.sql Cursor stvcomtc

stkhond.sql Cursor stvhond

stvacat.fmb Degree Award Category Code Validation Form

stvaccg.fmb Activity Category Validation Form

stvactc.fmb Activity Code Validation Form

stvactp.fmb Activity Type Validation Form

stvacyr.fmb Academic Year Validation Form

stvadmr.fmb Admission Request Checklist Code Validation
Form

stvascd.fmb Room Assignment Status Code Validation Form

stvasrc.fmb Address Source Validation Form

stvasty.fmb Assignment Type Code Validation Form

stvatyp.fmb Address Type Code Validation Form

stvbchr.fmb Background Inst. Characteristic Code Validation
Form

stvbldg.fmb Building Code Validation Form

stvcamp.fmb Campus Code Validation Form

stvcipc.fmb CIPC Code Validation Form

©2018 Ellucian. Confidential & Proprietary 127

Banner Integration

Script Name Object

stvcitz.fmb Citizen Type Code Validation Form

stvcnty.fmb County Code Validation Form

stvcoll.fmb College Code Validation Form

stvcomf.fmb Committee Member Role/Function Validation
Form

stvcoms.fmb Committee/Service Status Validation Form

stvcomt.fmb Committee/Service Type Code Validation Form

stvdays.fmb Days of the Week Validation Form

stvdegc.fmb Degree Code Validation Form

stvdept.fmb Department Code Validation Form

stvdisa.fmb Disability Type Code Validation Form

stvdlev.fmb Degree Level Code Validation Form

stvdplm.fmb Diploma Type Code Validation Form

stvempt.fmb Employment Type Validation Form

stvetct.fmb IPEDS Ethic Code Validation Form

stvethn.fmb Ethnic Code Validation Form

stvetyp.fmb Event/Function Type Code Validation Form

stvfcnt.fmb Faculty Contract Code Validation Form

stvgeod.fmb Geographic Region Division Code Validation
Form

stvgeor.fmb Geographic Region Code Validation Form

stvhldd.fmb Hold Type Code Validation Form

stvhond.fmb Departmental Honors COde Validation Form

stvhonr.fmb Institutional Honors Code Validation Form

stvinit.fmb Initials Code Validation Form

stvlang.fmb Language Code Validation Form

stvlead.fmb Leadership Validation Form

stvlgcy.fmb Legacy Code Validation Form

stvmajr.fmb Major, Minor, Concentration Code Validation
Form

stvmatl.fmb Material Code Validation Form

stvmdeq.fmb Medical Equipment Code Validation Form

©2018 Ellucian. Confidential & Proprietary 128

Banner Integration

Script Name Object

stvmedi.fmb Medical Code Validation Form

stvmrtl.fmb Marital Status Code Validation Form

stvnatn.fmb Nation Code Validation Form

stvorig.fmb Originator Code Validation Form

stvpent.fmb Port of Entry Code Validation Form

stvprcd.fmb Phone Rate Code Validation Form

stvptyp.fmb Source Contract Person Type Code Validation
Form

stvrdef.fmb Building/Room Attribute Code Validation Form

stvrelg.fmb Religion Code Validation Form

stvrelt.fmb Relation Code Validation Form

stvrmst.fmb Room Status Code Validation Form

stvrrcd.fmb Room Rate Code Validation Form

stvsbgi.fmb Source/Background Institution Code Validation
Form

stvsite.fmb Site Code Validation Form

stvspon.fmb International Student Sponsor Code Validation
Form

stvspsr.fmb Disability Service Code Validation Form

stvstat.fmb State/Province Code Validation Form

stvsubj.fmb Subject Code Validation Form

stvtele.fmb Telephone Type Validation Code Form

stvterm.fmb Term Code Validation Form

stvtesc.fmb Test Code Validation Form

stvtrmt.fmb Term Type Validation Form

stvvtyp.fmb Visa Type Code Validation Form

toftadn.sql f_amount_due function

toftbln.sql f_account_balance function

toftccn.sql f_calc_and_call_fnc function

toftchn.sql f_term_charges function

toftcon.sql f_collection_ind function

toftcrn.sql f_cat_range_fnc function

©2018 Ellucian. Confidential & Proprietary 129

Banner Integration

Script Name Object

toftctn.sql f_cat_term_fnc function

toftdan.sql f_calc_aged_days function

toftden.sql f_get_ar_desc function

toftdon.sql f_ar_deposit_ind function

toftdpn.sql f_deposit_balance function

toftdtn.sql f_ar_detail_ind function

toftefn.sql f_oldest_effective_date function

toftfan.sql f_financial_aid_memos function

tofthrn.sql f_other_range_fnc function

tofthtn.sql f_other_term_fnc function

toftmen.sql f_memo_balance function

toftmmn.sql f_ar_memo_ind function

toftomn.sql f_opt_term_fnc function

toftorn.sql f_opt_range_fnc function

toftotn.sql f_balance_other_terms function

toftown.sql f_amount_owned function

toftpan.sql f_term_payments function

toftpfn.sql f_ar_profile_ind function

toftrrn.sql f_req_range_fnc function

toftrtn.sql f_req_term_fnc function

toftsln.sql f_calc_aging_slot function

©2018 Ellucian. Confidential & Proprietary 130

Banner Integration

Ethnicity codes in Banner

This section gives you a guide for building and maintaining the tables that store ethnicity data.
You should consider these factors when preparing ethnicity data entry for EEO reporting within the
Human Resources system and for IPEDS reporting within the Student system.

Ethnic distinctions

The Ethnic Codes Rule Form (PTRETHN) and IPEDS Ethnic Validation Table (STVETCT) store
information about the ethnic background of individuals.

Note: Institutions can use the IPEDS Ethnic Validation Table to record Federal Government
reporting codes. Values not used for official reporting should not be added to STVETCT.

If you need to store more distinctive, perhaps institution–specific, ethnicity descriptions, use
the Ethnic Code Validation Table (STVETHN). This table allows you to make further ethnicity
distinctions, such as entering Apache, Blackfoot, and Sioux as types of Native American. These
lower value codes are then crosswalked into the Human Resources and Student systems against
the PTRETHN and the STVETCT forms respectively. This crosswalk mapping ensures proper
Federal ethnic values.

Note: Be sure to coordinate the process of maintaining the Ethnic Code Validation Table
(STVETHN) between the Student and Human Resources systems, so that you use agreed upon
values where appropriate. after you enter values, under no circumstances should you change or
delete them to coincide with reports.

New race and ethnicity categories

The U.S. 2000 Census was collected using new race and ethnicity categories, and the EEOC has
mandated that Affirmation Action reports for 2005 use this census data for comparison purposes.

Not all U.S. government departments have adopted this requirement. We anticipate that the
National Center for Education Statistics (NCES) will eventually release new IPEDS reporting
parameters that require institutions to provide information based on the new OMB categories. Thus,
institutions should begin the process of collecting the information based on the new categories.

Banner is being updated to collect data based on the new race and ethnicity categories. In addition
to the new categories, a person now has the ability to select one or more of the race categories.
Currently, Banner only allows one ethnicity per person record on SPBPERS.

Banner's current Ethnicity Code will continue to be maintained by Banner on the appropriate
person forms. In order to comply with the EEOC, we will release new rules and Human Resources
forms to comply with the data collection requirements.

©2018 Ellucian. Confidential & Proprietary 131

Banner Integration

New race code forms

The Regulatory Race Validation (GTVRRAC) table stores regulatory race codes. U.S. government
codes were delivered as system required seed data in General Release 7.2. This table is
maintained on the Regulatory Race Validation Form (GTVRRAC).

Note: These new codes will not be used for the 2005 IPEDS reporting cycle. However, they must
be mapped to race codes (see below) for future regulatory reporting.

Institution-defined race codes can be established on the new Race Rules Form (GORRACE) and
are stored on the Race Rules (GORRACE) table. When creating these codes, there should be
at least one race code for each of the U.S. government-established regulatory race codes (as
mentioned above).

For more information on the forms and tables for the new race codes, refer to the Banner General
User Guide.

A New Ethnicity Code has been added to the Ethnic Code Validation Form (STVETHN). The old
Ethnicity Code field will continue to be maintained.

The new race and ethnicity fields will appear on the Biographical window when the specific Banner
product’s forms are redelivered. This will occur after Release 7.2 of Banner General.

More information on working with the new ethnicity and race codes will be included in the
documentation for upcoming releases of the Banner Human Resources system.

Nonresident aliens

When dealing with individuals who are nonresident aliens, it is important to be aware of the methods
for reporting them in the Student and Human Resources systems.

Student system

The Student System’s IPEDS report will not consider an individual’s ethnic code if the person is a
nonresident alien.

An individual achieves nonresident alien status in the Student system if the current visa type
established on the International Information Form (GOAINTL) for that person has been set up on
the Visa Type Code Validation Form (STVVTYP) with the Non-Res(ident Alien Indicator) check box
selected.

Human Resources system

The Human Resources system will not report an individual’s ethnic code if that person is a
nonresident alien.

An individual achieves nonresident alien status in the Human Resources system if both of the
following are true at the same time:

©2018 Ellucian. Confidential & Proprietary 132

Banner Integration

• the Citizen code is entered on the Identification Form (PPAIDEN) with a corresponding entry in
the Citizen Type Validation Table (STVCITZ) and the citizen indicator STVCITZ_CITIZEN_IND
set to N.

• the person exists in the Person International Information Table (GOBINTL) and the Alien
Registration Number field GOBINTL_ALIEN_REG_NUMBER is null (has no value).

The Human Resources system will report a person’s ethnic code if all of the above hold true except
the person’s Alien Registration Number is not null (has a value).

©2018 Ellucian. Confidential & Proprietary 133

Reports and Processes

Reports and Processes
Reports and Processes

The infrastructure of Oracle*Reports has changed significantly between Reports 6i and Reports
10g. Please refer to the Banner 7.0 FAQ for known issues with Oracle*Reports and Banner.

Enhanced Oracle*Reports

For Release 7.0, both the mechanism that creates Oracle*Reports in Banner and the delivered
reports have been changed.

• You can now run lengthy reports in asynchronous mode, so you can return to working with
Banner forms while your report is running.

• If you want, you can review your parameters on the Oracle Report Value Window and make
changes before submitting the job.

• You can send the output of a report to an e-mail address.
• You can run all delivered reports from either the calling forms or from the Process Submission

Controls Form (GJAPCTL).

The format of the reports and the information they provide has not changed.

Note: Banner Oracle*Reports are limited to one value per parameter. Using multiple values will
result in this error: FRM-47013: Cannot add parameter PARMNAME to parameter list
INPUT_PARAMS: Parameter with this name exists.

Banner 7.0 requires Oracle*Reports 10g and uses the Oracle*Developer Suite toolset. Objects were
migrated to the Oracle*Developer Suite 10g toolset, and now use the RUN_REPORT_OBJECT built-
in. You can specify:

• The format of the report (PDF, HTML, RTF, XML, etc.)
• The destination type of the report (CACHE, FILE, MAIL, or PRINTER)
• Where you want the report to be sent (either a file location or, if the destination type is MAIL, an

e-mail address)
• The execution mode (BATCH or RUNTIME)
• Whether the report should be run synchronously or asynchronously
• Whether you will run the report from GJAPCTL alone or from the form that is specifically used to

run the report
• Whether the Oracle Reports parameter form should appear, displaying the existing parameters

and allowing you to change them

In addition, when you submit a report asynchronously now, you will receive a message in a pop-up
window with the report job ID.

The delivered Oracle reports for A/R, Finance and Student, have been changed to work with
Oracle*Reports 10g. For details about each report, please refer to the product-specific release
guides.

©2018 Ellucian. Confidential & Proprietary 134

Reports and Processes

To use Oracle*Reports 10g, you must have your report objects running on a report service that is
running on a report server.

In a previous release, an entry was added to the General User Preferences Maintenance Form
(GUAUPRF) to allow you to enter the Oracle Reports Server. A row was added to the Personal
Preference Table (GURUPRF) to store this value. Neither of these have been changed for Release
7.0.

New for Release 7.0 is an entry added to the General User Preferences Maintenance Form
(GUAUPRF) to all ow you to enter the Oracle Reports Service. A row is added to the Personal
Preference Table (GURUPRF) to store this value.

Enhanced Sscurity for Oracle*Reports

Release 7.1 introduced several security enhancements for Oracle*Reports.

The security enhancements were implemented through:

• Changes to the General PL/SQL Oracle*Reports Library (goqorep.pll) and the Report Forms
Object Library (goqrlib.fmb). See “General PL/SQL Oracle*Reports Library (GOQOREP),” later in
this chapter, for details.

• Changes to forms that call Oracle Reports. See “7.1 Changes for Forms that Call Oracle
Reports,” later in this chapter, for details.

• Changes to Oracle Reports RDF files. See “7.1 Changes for Oracle Reports RDF Files,” later in
this chapter, for details.

In addition, two new JAR files were introduced:

• banorep.jar, used to control cookie time-out and other settings for Oracle Reports security.
• bannerid.jar, used to access the SEED numbers for Oracle Reports security.

Only DBAs and site administrators can change the contents of these two JAR files. The Middle Tier
Implementation Guide details the setup of these files.

With Release 7.1, it is no longer necessary to generate a checksum for Oracle Reports. The
Checksum Generator Program (gurchks.exe) is no longer used. Instead, SEED numbers for Oracle
Reports security are handled by the new bannerid.jar file.

Set up Banner to run the enhanced Oracle*Reports

Perform the following steps to set up Banner to run the enhanced Oracle*Reports.

Procedure

1. Log on as the Baseline user.
2. Access the General User Preferences Maintenance Form (GUAUPRF) and select the Directory

Options tab.
3. Scroll down until you see the Enter the name of your Oracle Reports server entry.

(This entry is not new for Release 7.0.)
4. If the information is not already there, enter the name of your Oracle Reports server, which is:

©2018 Ellucian. Confidential & Proprietary 135

Reports and Processes

a) Your environment’s machine name
b) The port value

For example: http://machname:7778/reports/rwservlet?
5. The next entry is the Enter the name of your Oracle Reports Service Name entry.

(It is new for Release 7.0.)
6. Enter the location of your Oracle Reports Service.

For example: rep_machname
7. Save your changes.

Set up default values for parameters 71-77

Job Submission parameters 71 -77 define how the report will be run (e.g., its format, destination,
whether it will be run in synchronous or asynchronous mode, etc.). You can set up the default values
for each report on the Parameter Definitions Form (GJAPDEF) and the Parameter Value Validations
Form (GJAPVAL).

Procedure

1. Access the Parameter Definitions Form (GJAPDEF).
2. Enter a value for 71 - Destination Format.

Define the report’s default format. Valid values include DELIMITED, HTML, PDF, and RTF. The
default value is PDF.

Note: POSTSCRIPT and PRINTER DEFINITION are not available at this time. If you choose
either of them, you will receive the error Destination format of printer definition is not currently
supported.

3. Enter a value for 72 - Destination Type.

Specify the report’s default destination type. Valid values are:

• CACHE - display the report on the screen (the default)
• FILE - save the report to a file
• MAIL - send the report to an e-mail address
• PRINTER - send the report to a printer

When you choose a Destination Type of Cache, the Parameter Form is automatically
populated with an Execution Mode of Runtime, a Communication Mode of
Synchronous, and a Parameter Form value of Yes by default.

When you choose a Destination Type of File, Printer, or Mail, the Parameter Form
is automatically populated with an Execution Mode of Batch, a Communication Mode of
Asynchronous, and a Parameter Form value of No by default.

Note: Because your institution’s reports could contain sensitive information, make sure that
you send report data to a place where only the appropriate users have access to it.

©2018 Ellucian. Confidential & Proprietary 136

http://machname:7778/reports/rwservlet?

Reports and Processes

4. Enter a value for 73 - Destination Name.

Define the default location where you want the report to be sent. You can enter up to 30
characters.

• If the Destination Type is FILE, this must be the name and location of a file to which the data
should be written.

• If the Destination Type is MAIL, this must be a valid e-mail address. If you are sending the
data to more than one address, each address must be separated by a comma (no spaces
are permitted).

• If the Destination Type is PRINTER, this must be a valid printer name. If you leave this blank,
the output will go to the report server’s default printer (if you have defined one).

• If the Destination Type is CACHE, you do not need to (and will not be allowed to) enter a
destination name.

5. Enter a value for 74 - Execution Mode.

Specify either BATCH or RUNTIME as the execution mode. RUNTIME is the default value.
6. Enter a value for 75 - Communication Mode.

• If the Communication Mode is ASYNC (asynchronous), the person who submitted the report
can continue working in Banner while the report runs.

• If the Communication Mode is SYNC (synchronous), control only returns to the calling form
after the report has finished processing.

The default value is SYNC.

Note: If parameter 75 is ASYNC, parameter 76, Parameter Form Designation, cannot be
YES.

7. Enter a value for 76 - Parameter Form Designation, if you wish.

Controls the display of the Oracle Reports parameter form:

• If YES, the form is displayed.
• If NO, the form is not displayed.

Note: If parameter 76 is YES, then parameter 72, Destination Type, must be CACHE.

Note: Parameter 76 cannot be YES if parameter 75, Communication Mode, is ASYNC.

Note: As of Release 7.1, there was a known issue related to Oracle Reports when
parameter 76 is YES and any other parameter has a wildcard value. If you run a report with
that combination, you will receive an error.

8. Enter a value for 77 - Show Report Value Window.

Specify if the Oracle Report Value Window should appear when a user runs a report from a form
other than GJAPCTL.

• If YES, the window will appear and the user can change the values before submitting the
report.

©2018 Ellucian. Confidential & Proprietary 137

Reports and Processes

• If NO, the window does not appear and the report is run with Parameter Definition values. If
no Parameter Definition values were set up for the report, default values will be used.

Note: It is not necessary for the Report Value Window to be displayed for reports run from
GJAPCTL because the information it contains is displayed in the Parameter Values block on
GJAPCTL. Essentially, Parameter 77 has no meaning to GJAPCTL.

9. Save your changes.

Run Custom Oracle Reports with Default Parameters

Parameters 71 through 76 have been set up for all BASELINE Oracle Reports. Typically, you will
set up these parameters for each custom Oracle Report (specifically, for each RDF). If you run a
custom report without first setting up parameters, default values will be used for parameters 71
through 76.

The default values are set temporarily for the report in GJAPCTL when you perform a next block
function from the key block. This logic is in place to minimally support the required parameters 71
through 76, until those GJBPDEF rows can be set for the report.

User preferences for Oracle Reports output

The file name format and location of Oracle Reports can be controlled through settings in the
General User Preference Maintenance Form (GUAUPRF).

A record in the Directory Options tab allows you to control the file name format and location of
Oracle Reports output. With this record, you can control where users send their report output when
the report Destination Type is set to File (DESTYPE=FILE).

If you change nothing on the BASELINE row (i.e., where GURUPRF_USER_ID is equal to
BASELINE), then the value DEFAULT_BEHAVIOR is used, and users send their output to the drive/
folder/subfolder specified in the Destination Name field or to the default directory on the Reports
server, if Destination Name is valued with only a file name. This is the same way this feature worked
in previous releases. However, you have the option to enter the name of and Oracle Reports root-
level folder/subfolder value (including an ending slash).

To this root-level folder/subfolder value, you have the option to append:

• An indication for including a timestamp in the report file name (date)
• An indication for having the report file written to an oracle-username-subfolder (user)
• Indications for both timestamp and username subfolder (user, date)

If your institution chooses not to append the string date to the report file name, then you must
otherwise ensure that duplicate file names are not overwritten.

If you use any of the new options, keep in mind that the methods you use to periodically purge
the output on your Reports server may need to be adjusted. Also, when running the reports,
users will enter just the file name (and extension) in the Destination Name field. The configured
options will be dynamically constructed into this entered Destination Name value.

©2018 Ellucian. Confidential & Proprietary 138

Reports and Processes

The delivered value for BASELINE is DEFAULT_BEHAVIOR. You may change this value to one of
the following options:

• A root-level folder (including an ending slash) to which all Oracle Reports output with a
Destination Type of File will be sent. This root-level folder must exist and be writable by the
Reports server.

Example of the BASELINE row configuration

Windows:

f:\orep_root\

Unix/Linux:

/u02/orep_root/

Example of what output might look like with this BASELINE row configuration

Windows:

f:\orep_root\sample_report.pdf

Unix/Linux:

/u02/orep_root/sample_report.pdf

If you choose this option, make sure that all Oracle Reports users are configured to access files
at this root location, and that the Windows share (or Unix security) is configured accordingly.
Users need read access to this folder. Additionally, make sure that they do not send report output
with sensitive data to this folder.

If a value exists in the User Value field for this corresponding type of BASELINE row, it will be
ignored.

• A root-level folder and the string user. If desired, users may specify subfolders within their
username folder by entering the name of the subfolder in the corresponding User Value field of
GUAUPRF (including an ending slash). This specified subfolder must exist.

Example of the BASELINE row configuration

Windows:

f:\orep_root\user

Unix/Linux:

/u02/orep_root/user

Example of what output might look like with this BASELINE row configuration

Windows:

f:\orep_root\jdoe\sample_report.pdf

Unix/Linux:

/u02/orep_root/jdoesample_report.pdf

Example of what output might look like if a User Value subfolder of xyz\ (for Windows) or xyz/ (for
Unix) is specified on the users GUAUPRF row

Windows:

©2018 Ellucian. Confidential & Proprietary 139

Reports and Processes

f:\orep_root\jdoe\xyz\sample_report.pdf

Unix/Linux:

/u02/orep_root/jdoe/xyz/sample_report.pdf

Note: You must create user folders for Oracle user IDs, if you choose this option. If you do not,
the Reports server will not be able to write the file to the specified location. It is recommended
that you create Windows share (or Unix security) on these user folders.

• A root-level folder and the string date. If you choose this option, then a unique time stamp will
be appended to the end of the report name, so that files will not be overwritten.

Example of the BASELINE row configuration

Windows:

f:\orep_root\date

Unix/Linux:

/u02/orep_root/date

Example of what output might look like with this BASELINE row configuration

Windows: f:\orep_root\sample_report20061212081255.pdf

Unix/Linux:

/u02/orep_root/sample_report20061212081255.pdf

• A root-level folder and the strings user,date.

Example of the BASELINE row configuration

Windows:

f:\orep_root\user,date

Unix/Linux:

/u02/orep_root/user,date

Example of what output might look like with this BASELINE row configuration

Windows: f:\orep_root\jdoe\sample_report20061212081255.pdf

Unix/Linux:

/u02/orep_root/jdoe/sample_report20061212081255.pdf

Note: You must create user folders for Oracle user IDs if you choose this option. If you do not,
the Reports server will not be able to write the file to the specified location. It is recommended
that you create Windows share (or Unix security) on these user folders.

©2018 Ellucian. Confidential & Proprietary 140

Reports and Processes

Changes to Support Enhanced Oracle Reports

The following changes were introduced with Release 7.0 to support enhanced Oracle Reports with
Reports 10g. Please refer to the Banner General User Guide for details on these changes.

• The Job Submission Profile Maintenance Form (GJAJPRF) was not made obsolete for Release
7.0, but the functionality it had performed is no longer necessary.

• Extensive changes were made to the Process Submission Controls Form (GJAPCTL) to allow
more flexibility in running both delivered reports and custom reports.

• A new entry has been added to the General User Preferences Maintenance Form (GUAUPRF)
to hold the location of the Oracle Reports Service Name.

Student, Finance, and Accounts Receivable Reports

All of the Oracle Reports delivered for A/R, Finance, and Student were migrated to the
new Oracle*Developer Suite 10g (Oracle Reports 10g). Please refer to the product-specific
documentation for a list of those reports.

Each of the Banner 6.x BASELINE Oracle*Report source files was converted through the
Oracle*Developer Suite Reports 10g Builder toolset. They were then changed to use the new
RUN_REPORT_OBJECT built-in so the Oracle Report Value Window will include the new parameters
from GJAPCTL.

Three new parameters were added:

Parameter Datatype Size Initial Value

P_ACTION Character 200 _action_

P_SERVERNAME Character 40 None

P_USER_CONNECT Character 200 None

Also, the function BEFOREPFORM was changed to facilitate connections and communications with
the report server. The following is an example of the changed function, and the new lines are
marked NEW.

Function BeforePForm return boolean is
--
NEW vc_parameter_form varchar2(4000);
NEW vc_hidden_runtime_values varchar2(1000);
NEW vc_report_name varchar2(100);
 hold_cmd VARCHAR2(240);
begin
 if :P_Pass = 'INSECURED' then
 return (TRUE);
 end if;
--

©2018 Ellucian. Confidential & Proprietary 141

Reports and Processes

 if :P_Role IS NOT NULL then
 if substr(:P_Pass,1,1) = chr(34) then
 Hold_Cmd := :P_Role||' IDENTIFIED BY '||:P_Pass;
 else
 Hold_Cmd := :P_Role||' IDENTIFIED BY '||chr(34)||:P_Pass ||
chr(34);
 end if;
 DBMS_SESSION.SET_ROLE(Hold_Cmd);
 end if;
IF :parm03 is null then
 :parm03 := 'M' ;
 end if;
NEW If (:p_action='_action_') then
NEW vc_hidden_runtime_values:='_hidden_';
NEW else
NEW srw.get_report_name(vc_report_name);
NEW vc_hidden_runtime_values:='report='||
vc_report_name||'&destype='
NEW ||:destype||'&desformat='||:desformat||'&userid='
NEW ||:p_user_connect||'&server='||:p_servername;
NEW end if;
NEW vc_parameter_form:='<html><body bgcolor="#ffffff"><form
 method=post action="'
NEW ||:P_ACTION||'">'||'<input name="hidden_run_parameters"
 type=hidden value="'
NEW ||vc_hidden_runtime_values||'">'||'<center><p><table border=0
 cellspacing=0
cellpadding=0><tr><td>'
NEW ||'<input type=submit></td><td width=15><td><input type=reset></
td>'||'</tr></table><p><hr><p>';
--
NEW srw.set_before_form_html (srw.text_escape, vc_parameter_form);
 return (TRUE);

--
exception
 when others then
 SRW.MESSAGE(1000, '*ERROR* Before Parm trigger could not set
 database role - report terminated.');
 return (FALSE);
end;

Parameters 71-77

Beginning with Release 7.0, the following new parameters are available for all reports.

• 71 - Destination Format
• 72 - Destination Type
• 73 - Destination Name

©2018 Ellucian. Confidential & Proprietary 142

Reports and Processes

• 74 - Execution Mode
• 75 - Communication Mode
• 76 - Parameter Form
• 77 - Display Report Value Window

See “Setting Up Default Values for Parameters 71-77,” earlier in this chapter, for more information
on these parameters.

7.1 Changes for forms that call Oracle Reports

With Release 7.1, all BASELINE forms that call Oracle Reports had specific changes made to them.
You will need to apply these changes to any custom forms that call Oracle Reports.

Note: Make these changes only after you have completed all 7.0 changes.

Description of changes

Before opening the equivalent to the BASELINE 7.0 version of the FMB file for modification, be sure
that your FORMS90_PATH can see the 7.1 version of goqorep.pll and goqrlib.fmb.

Procedure

1. Open the equivalent to the BASELINE 7.0 version of the .fmb file for modification
using Forms*Builder10g. This will pull in reference modifications from the 7.1 version
of goqrlib.fmb for items G$_BANNER_REPORT_HEADER.REPORT_BEAN and G
$_BANNER_REPORT_HEADER.LIST_PARAM_NAMES.

2. Set CANVAS of the REPORT_BEAN to the canvas of the KEY_BLOCK. If the form does not have
a KEY_BLOCK, set the CANVAS of the REPORT_BEAN to that of the canvas of the first navigable
block.item in the form. This ensures that the REPORT_BEAN item becomes properly initialized
when the form is first run.

3. If this form does pass report parameter values, modify the trigger that calls the report
(REPORT_269 is an example of a trigger that passes report parameters from the Finance
product) to value the item LIST_PARAM_NAMES with a string of parm names (each separated
by '::') that are used by the report. The following is an example of this trigger, with <---ADD
LINE indicating the coding modification:

DECLARE
lv_list_id PARAMLIST;
BEGIN
if :system.record_status in ('NEW', 'INSERT') then
Message(G$_NLS.Get('X', 'FORM','*ERROR* Must SAVE record to run
 report.'));
Raise Form_Trigger_Failure;
end if;
-- --
lv_list_id := GET_PARAMETER_LIST('input_params');
IF NOT Id_Null(lv_list_id) THEN

©2018 Ellucian. Confidential & Proprietary 143

Reports and Processes

DESTROY_PARAMETER_LIST(lv_list_id);
END IF;
lv_list_id := CREATE_PARAMETER_LIST('input_params');
-- --
IF :DISPLAY_PMS_CODE IS NOT NULL THEN
ADD_PARAMETER(lv_list_id,'PARM01',TEXT_PARAMETER,:DISPLAY_PMS_CODE);
ADD_PARAMETER(lv_list_id,'PARM02',TEXT_PARAMETER,'');
ADD_PARAMETER(lv_list_id,'PARM03',TEXT_PARAMETER,'S');
ELSE
ADD_PARAMETER(lv_list_id,'PARM01',TEXT_PARAMETER,'');
ADD_PARAMETER(lv_list_id,'PARM02',TEXT_PARAMETER,:FRR269R_GRNT_CODE);
ADD_PARAMETER(lv_list_id,'PARM03',TEXT_PARAMETER,'M');
END IF;
ADD_PARAMETER(lv_list_id,'PARM04',TEXT_PARAMETER,TO_CHAR(:FRR269R_PERIOD_TO_DATE,'DD-
MON-YYYY'));
-- --
 :G$_BANNER_REPORT_HEADER.LIST_PARAM_NAMES := <--- ADD LINE

'PARM01'||'::'||'PARM02'||'::'||'PARM03'||'::'||'PARM04'; <--- ADD LINE

G$_BANNER_REPORT_PROCESSING.START_REPORT_WINDOW('FRR269R','Y'); END;
4. Create an appropriate entry for the audit trail, save the .fmb file, and generate the .fmx file.

7.1 Changes for Oracle Reports RDF Files

Changes were made in Release 7.1 to all BASELINE Oracle Reports RDF files. You will need to
make these same changes to custom Oracle Reports at your site.

Note: Make these changes only after you have completed all 7.0 changes.

Description of changes

Before opening the equivalent to the BASELINE 7.0 version of the RDF file for modification, be sure
that your REPORTS_PATH can see the 7.1 version of goqorep.pll.

About this task

Procedure

1. Open the equivalent to BASELINE 7.0 version of the RDF file for modification using
Reports*Builder10g.

2. Attach the goqorep to the RDF.

Enter the name in all UPPERCASE letters with no file extension, and then press the Attach
button. After attaching, you can expand the library to view the audit_trail_7_1, which you
will see if your REPORTS_PATH is as described above.

3. Expand the Report triggers and add the code below to the AfterReport:

©2018 Ellucian. Confidential & Proprietary 144

Reports and Processes

function AfterReport return boolean is
begin
G$_REPORT_SECURITY.G$_REPORT_REVOKE_ACCESS;
return (TRUE);
exception
when others then
return (FALSE);
end;

4. Make the following DELETE and ADD lines to the BeforePForm function. Please note that the
lines marked <---ADDXXX, <---ADDYYY, and <---ADDZZZ in the example code below refer
to BASELINE object FRR272B and release number 7.1. These values, of course, will depend
on the object you are modifying and the release of these corresponding changes.

function BeforePForm return boolean is
--
-- NRSmith 06/23/2004
-- Core contents of this trigger pulled from
 OracleTechnologyNetwork (OTN) site as
-- per a trouble shooting example to aid with migration to
 OracleDS10g*Reports
-- OTN Doc ID = Note:139546.1
--
vc_parameter_form varchar2(4000);
vc_hidden_runtime_values varchar2(1000);
vc_report_name varchar2(100);
hold_cmd VARCHAR2(240);
-- <---ADD
obj ORA_JAVA.JOBJECT; <---ADD
x VARCHAR2(100); <---ADD
exc ORA_JAVA.JOBJECT; <---ADD
<---ADD
-- Exceptions. <---ADD
-- <---ADD
NO_OBJECT EXCEPTION; <---ADD
NO_INST EXCEPTION; <---ADD
NO_ACCESS EXCEPTION; <---ADD
NO_PASSWORD EXCEPTION; <---ADD
INVALID_VERSION EXCEPTION; <---ADD
INVALID_ACCESS EXCEPTION; <---ADD
NAME_MISMATCH EXCEPTION; <---ADD
-- <---ADD
-- Exception pragmas. <---ADD
-- <---ADD
PRAGMA EXCEPTION_INIT(NO_OBJECT,-20100); <---ADD
PRAGMA EXCEPTION_INIT(NO_INST,-20101); <---ADD
PRAGMA EXCEPTION_INIT(NO_ACCESS,-20102); <---ADD
PRAGMA EXCEPTION_INIT(NO_PASSWORD,-20103); <---ADD
PRAGMA EXCEPTION_INIT(INVALID_VERSION,-20104); <---ADD
PRAGMA EXCEPTION_INIT(INVALID_ACCESS,-20105); <---ADD
PRAGMA EXCEPTION_INIT(NAME_MISMATCH,-20106); <---ADD
-- <---ADD
begin
-- <---ADD

©2018 Ellucian. Confidential & Proprietary 145

Reports and Processes

-- -- Start Security Check <---ADD
G$_REPORT_SECURITY.G$_REPORT_VERIFY_ACCESS('FRR272B', '7.1') ;
 <---ADDXXX
-- -- End Security Check <---ADD
-- <---ADD
if :P_Pass = 'INSECURED' then <---DELETE
return (TRUE); <---DELETE
end if; <---DELETE
-- <---DELETE
if :P_Role IS NOT NULL then <---DELETE
-- 81278 Dev6i Patch10 seems to strip away double quotes-they are
 needed <---DELETE
if substr(:P_Pass,1,1) = chr(34) then <---DELETE
Hold_Cmd := :P_Role||' IDENTIFIED BY '||:P_Pass; <---DELETE
else <---DELETE
Hold_Cmd := :P_Role||' IDENTIFIED BY '||chr(34)||:P_Pass ||chr(34);
 <---DELETE
end if; <---DELETE
DBMS_SESSION.SET_ROLE(Hold_Cmd); <---DELETE
end if; <---DELETE
-- If Reports is called from the URL and not from Forms then
 p_action is
-- set to its default value. In this case the hidden_value has to
 keep the
-- default value too.
If (:p_action='_action_') then
vc_hidden_runtime_values:='_hidden_';
else
-- -- The Report is started from Run_Report_Object and the hidden
 parameter has to be
set.
-- -- get the report module name
srw.get_report_name(vc_report_name);
-- -- Note the only custom defined parameters
 are :p_action,:p_user_connect,
-- -- :p_servername. If there are additional parameters used for
 your Report
-- -- that are being passed from the form that need to be hidden,
-- -- these need to be added to the "vc_hidden_runtime_values"
 string
vc_hidden_runtime_values:='report='||
vc_report_name||'&destype='||:destype||'&desformat
='
||:desformat||'&userid='||:p_user_connect||'&server='||:p_servername;
end if;
Banner General Technical Reference Manual | Reports and Processes
 140
5. Create an appropriate entry for the audit trail, save the RDF
 file, and convert it to a
REP file.
vc_parameter_form:='<html><body bgcolor="#ffffff"><form method=post
 action="'
||:P_ACTION||'">'||'<input name="hidden_run_parameters" type=hidden
 value="'
||vc_hidden_runtime_values||'">'||'<center><p><table border=0
 cellspacing=0
cellpadding=0><tr><td>'

©2018 Ellucian. Confidential & Proprietary 146

Reports and Processes

||'<input type=submit></td><td width=15><td><input type=reset></
td>'||'</tr></
table><p><hr><p>';
-- -- set the modified before form value, overwriting the default.
-- -- If you want to change the look of the parameter form then you
-- -- can do this here as well
srw.set_before_form_html (srw.text_escape, vc_parameter_form);
return (TRUE);
--
exception
WHEN NO_OBJECT THEN <--ADD
SRW.MESSAGE(1000,'*ERROR* No parameters were passed - report
 terminated.'); <--
ADD
return (FALSE); <--ADD
-- <--ADD
WHEN NO_INST THEN <--ADD
SRW.MESSAGE(1000,'*ERROR* No records found on GUBIPRF - report
 terminated.');<--
ADD
return (FALSE); <--ADD
-- <--ADD
WHEN NO_ACCESS THEN <--ADD
SRW.MESSAGE(1000,'*ERROR* User not authorized to access FRR272B -
 report
terminated.'); <--ADDYYY
return (FALSE); <--ADD
-- <--ADD
WHEN NO_PASSWORD THEN <--ADD
SRW.MESSAGE(1000,'*ERROR* No password found on GUBROLE - report
 terminated.');<--
ADD
return (FALSE); <--ADD
-- <--ADD
WHEN INVALID_VERSION THEN <--ADD
SRW.MESSAGE(1000,'*ERROR* Invalid version of FRR272B - report
 terminated.'); <--
ADDZZZ
return (FALSE); <--ADD
-- <--ADD
WHEN INVALID_ACCESS THEN <--ADD
SRW.MESSAGE(1000,'*ERROR* Invalid password tried - report
 terminated.'); <--
ADD
return (FALSE); <--ADD
-- <--ADD
WHEN ORA_JAVA.EXCEPTION_THROWN THEN <--ADD
SRW.MESSAGE(1000, '*ERROR* Report Server Configuration - report
 terminated.');<--
ADD
ORA_JAVA.CLEAR_EXCEPTION; <--ADD
return (FALSE); <--ADD
-- <--ADD
WHEN OTHERS THEN <--ADD
SRW.MESSAGE(1000,'ERROR: ' || SUBSTR(SQLERRM,1,190)); <--ADD
--SRW.MESSAGE(1000, '*ERROR* Before Parm trigger could not set
 database role -

©2018 Ellucian. Confidential & Proprietary 147

Reports and Processes

report terminated.'); <--ADD
return (FALSE); <--ADD
when others then <---DELETE
SRW.MESSAGE(1000, '*ERROR* Before Parm trigger could not set
 database role - report
terminated.'); <---DELETE
return (FALSE); <---DELETE

5. Create an appropriate entry for the audit trail, save the RDF file, and convert it to a REP file.

General PL/SQL Oracle*Reports Library (GOQOREP)

Release 7.0 changes

This library was changed extensively in Release 7.0 to.

Procedure

1. Use Oracle’s RUN_REPORT_OBJECT.
2. Provide the optional Report Value window to the forms (other than GJAPCTL) that invoke

Oracle*Reports.

Release 7.1 changes

With Release 7.1, the G$_SCT_RUN_REPORTS package replaced G$_SCT_RUN_REPORT, and three
other packages were added.

• BANNERID Java Imported Package
• EXCEPTION_ Java Imported Package
• G$_REPORT_SECURITY Package

The G$_BANNER_REPORT_PROCESSING package was changed to include a
p_report_param_name_list parameter in the PROCESS_REPORT function.

Release 7.3 changes

With Release 7.3, the G$_REPORT_VPDI package was added to the library to support Multi-Entity
Processing (MEP) using Virtual Private Database (VPD). In addition, two new functions were added
to the G$_SCT_RUN_REPORT_SERVER and G$_SCT_RUN_REPORT_ONLINE procedures.

• p_vpdi_home_code

• p_vpdi_process_code

©2018 Ellucian. Confidential & Proprietary 148

Reports and Processes

The RUN_REPORT_OBJECT

The G$_SCT_RUN_REPORTS procedure (which replaced G$_SCT_RUN_REPORT in Release 7.1)
uses the new RUN_REPORT_OBJECT provided in the Oracle*Developer Suite 10g toolset.

This allows you to specify:

• The format of the report (PDF, HTML, RTF, XML, etc.)
• The destination type of the report (CACHE, FILE, MAIL, or PRINTER)
• Where you want the report to be sent (either a file location or, if the destination type is MAIL, an

e-mail address)
• The execution mode (BATCH or RUNTIME)
• Whether the report should be run synchronously or asynchronously
• Whether the Oracle Report parameter form should appear to display the existing parameters and

allow you to change them

The parameters and corresponding data types for this procedure are:

Parameter Datatype

p_report_id REPORT_OBJECT

p_report_filename VARCHAR2

p_report_server VARCHAR2

p_report_service VARCHAR2

p_report_desformat VARCHAR2

p_report_destype VARCHAR2

p_report_desname VARCHAR2

p_report_execution_ mode VARCHAR2

p_report_comm_mode VARCHAR2

p_paramlist PARAMLIST

p_report_success BOOLEAN

The optional Report Value Window

Banner allows you to use the Oracle Report Value Window to review and, if necessary, change
various processing parameters for your job.

It is not available when you run a report through GJAPCTL; it would show the same information as
GJAPCTL. It is available for forms like the Standard Billing 270 Form (FRR270B), where you can
enter data into the form, then run the report through the Options menu.

G$_BANNER_REPORT_EDITING and G$_REPORT_PROCESSING support using this window in
Banner.

©2018 Ellucian. Confidential & Proprietary 149

Reports and Processes

The core routine that is invoked when you run a report is G
$_BANNER_REPORT_PROCESSING.START_REPORT_WINDOW. If job submission parameter 77 is
YES (or is not found), the Report Value Window is displayed and the G$_BANNER_REPORT_BLOCK’s
when-button-pressed trigger will accept input from the window - users can change report
parameters 71-76 on the fly. When the user selects Run Report, the PROCESS_REPORT routine is
fired and the report is run.

If, however, job submission parameter 77 is NO, the Report Value Window is not displayed. The
Parameter Definition values for the report (or default values if no Parameter Definition values exist)
are loaded for parameters 71-76, and the PROCESS_REPORT routine runs using them.

All items in the Report Value Window have edit routines established for them in the G
$_BANNER_REPORT_EDITING package. Many of these routines are stub edits, which have been
established so that the library objects (.pll and .plx) can be changed and redeployed without
requiring you to regenerate and redeploy any other form objects.

The G$_BANNER_REPORT_EDITING.EDIT_OREP_ROW routine has been delivered with Release
7.0 to enable you to edit the Report Value Window row.

Note: Certain values and combinations of values are not permitted for parameters 71-77. See
“Setting Up Default Values for Parameters 71-77,” earlier in this chapter, for restrictions on values.

Report Forms Object Library (GOQRLIB)

The User Interface (UI) items associated with the optional Report Value window are found in forms
that have referenced or been sub-classed in the object group G$_BANNER_REPORT from the new UI
library form GOQRLIB.

With Release 7.1, the following items were added to the G$_BANNER_REPORT_HEADER block of the
G$_BANNER_REPORT object group:

• REPORT_BEAN—Accommodates Oracle Reports security layer implementation.
• LIST_PARAM_NAMES— Holds the names of parameters (i.e. PARM01, PARM02, etc.) that pass

values to the report. In goqorep.pll routines, this item is parsed to extract parameter names.
These parameter names are then used to extract the corresponding value from the LIST item.

Dynamic Procedure Library (GOQRPLS)

A new function, G$_GET_UPRF_WEBRPT_SERVICE, was added to retrieve the values for the new
Oracle Reports Service Name entry on GUAUPRF.

Key Value

GURUPRF_GROUP REPORT

GURUPRF_KEY WEB

GURUPRF_ STRING SERVICE

©2018 Ellucian. Confidential & Proprietary 150

Reports and Processes

Reports in Banner General

Banner General Pro*C and Pro*COBOL reports are listed in Chapter 15, “Reports and Processes,”
of the Banner General User Guide.

Perl Reports

Banner General contains the following Perl reports and processes.

gebcmplc.pl General Master Pro*C compile script

gencmpl.pl General Master COBOL compile script

gjajobs.pl Main Job Submission script invoked by the
gurjobs C program

gjajsub.pl Called by gjajobs.pl to do the actual submission
of a process to the operating system

gjawnte.pl Obtains the Banner and Oracle Windows NT
Environment Variables from the NT Registry

gjawnts.pl Spawns gjajsub in the background (Windows NT
submit)

glbdata.pl Executes GLBDATA

glblsel.pl Executes GLBLSEL

gjbparm.pl Executes GLBPARM and GLOLETT

glolett.pl Executes GLOLETT

glrletr.pl Executes GLRLETR and GUAPRPF

guavrfy.pl Executes GUAVRFY

gurjobs.pl Executes GURJOBS

gurjwnt.pl Opens a background task in Windows and runs
gurjobs.pl

gurplb1.pl Takes in a Script Name and a number of
seconds to sleep, then calls gurplb2.pl in the
background

gurplb2.pl Runs the script passed from gurplb1.pl looping
and sleeping at the interval specified, which is
also passed from gurplb1.pl

sctproc.pl Banner C compiler

sctprocb.pl Banner COBOL Compiler

©2018 Ellucian. Confidential & Proprietary 151

Reports and Processes

Report and Process Attributes

Report and Process Attributes Legend

Report or Process The report/batch process name.

Language Identifies the language for the process -
COBOL, C, RPT, SQL, or PL/SQL.

Update/Query Does the process update any tables, or is it
strictly a query-only report?

Audit Can you run the update process in Audit Mode,
so that you can produce the report without an
update taking place (Yes or No)?

Yes appears in this column only if the process
permits both update and audit mode. If the
report is query only, Yes does not appear in this
column.

Job Submission Can you run the process through job submission
(Yes or No)?

Sleep/Wake Is the process used in conjunction with Sleep/
Wake (Yes or No)?

Off Peak Is it recommended that you defer this program
to an off-peak processing time (late night,
weekends) for performance reasons (Yes or
No)?

Restart If the process aborts or is terminated after the
process is initiated, are special procedures
required to restart the process without any
adverse consequences (Yes or No)?

Yes does not appear in this column if the job
can be restarted without special procedures. If
Yes appears, refer to the Restart section of this
chapter for more information regarding recovery
procedures.

Report
or
Process

Language Update/
Query

Audit Job
Submission

Sleep/
Wake

Debug/
Trace

Off Peak Restart

GJRRPTS C Query Yes Yes

GLBDATA COBOL Update Yes Yes

GLBLSEL COBOL Update Yes Yes Yes

GLBPARMCOBOL Query Yes Yes

©2018 Ellucian. Confidential & Proprietary 152

Reports and Processes

Report
or
Process

Language Update/
Query

Audit Job
Submission

Sleep/
Wake

Debug/
Trace

Off Peak Restart

GLOLETT COBOL Update Yes Yes Yes

GLRLETR C Update Yes Yes Yes Yes

GPPADDRC Update Yes Yes

GORPGEOC Update Yes Yes Yes

GORSEVEC Yes Yes

GORSGEOC Update Yes Yes Yes

GUAVRFY COBOL Query Yes Yes

GUAGETPCOBOL Query Yes

GUASETRCOBOL Query Yes

GUPDELT C Update Yes Yes Yes

GURDETL C Update Yes Yes

GURHELPC Query Yes Yes

GURINSO C Update Yes

GURPDEDC Query Yes Yes

GURTABL C Query Yes Yes

GURTEXT C Query Yes Yes

GURTPACC Update Yes

GUSMDID C Update Yes Yes

Trace mode (debug) for General COBOL programs

Running a process in trace mode provides you with a step-by-step process history. It can be used to
track down the source of an error message or to verify your place in the process.

Note: Trace mode is not available when you use Job Submission (see restrictions in the Report
and Process Attributes Matrix) to run the process.

The following General COBOL programs may be executed in trace mode:

GLBLSEL - Letter Generation Variable Data Extract Process

Three options are available for trace mode. These options are controlled by the value of the debug
flag parameter which is passed on the command line.

©2018 Ellucian. Confidential & Proprietary 153

Reports and Processes

GLBLSEL - Letter Generation Variable Data Extract Process

UNIX: glblsel.shl userid password 1 GLBLSEL Y

glblsel.shl userid password 1 GLBLSEL I

glblsel.shl userid password 1 GLBLSEL S

Debug flag: Y – display SQL, paragraph names and
additional information

I – display SQL and values inserted into the
GLRCOLR table

S – display SQL only

VAX: @gen$com:glblsel userid password 1 GLBLSEL
Y

(substitute debug flag Y, I, S as desired)

Windows perl -S glblsel.pl userid password 1 GLBLSEL Y

or cd %BANNER_HOME%\general\misc perl
glblsel.pl userid password 1 GLBLSEL Y

Note: The -S tells perl to look for the glblsel.pl
in the PERL5LIB directory.

GLBDATA - Population Selection Extract Process

UNIX: glbdata.shl userid password 1 GLBDATA Y

VAX: @gen$com:glbdata userid password 1
GLBDATA Y

Windows: perl glbdata.pl userid password 1 GLBDATA Y

GLOLETT - Automatic Letter Compilation Process

UNIX: glolett.shl userid password 1 GLOLETT DEBUG

VAX: @gen$com:glolett userid password 1 GLOLETT
DEBUG

Windows: perl glolett.pl userid password 1 GLOLETT
DEBUG

For UNIX: In each of the above examples, | tee outputfilename are optional arguments that may
be passed at the end of the command line examples. Adding | tee outputfilename will result in
the output displayed on the screen to be simultaneously written to a file with the designated
outputfilename. This file may be edited and searched for specific messages and errors.

For VAX: In the above example for GLOLETT only, /log = logfilename are optional arguments that
may be passed at the end of the command line. GLBLSEL and GLBDATA cannot be submitted in

©2018 Ellucian. Confidential & Proprietary 154

Reports and Processes

a batch mode because the user is required to respond to interactive prompts. OpenVMS does not
have an equivalent to the UNIX tee command which allows output to be written simultaneously to
the screen and to an output file. When a problem is encountered, the error messages and pertinent
information will be located in the final lines displayed from the debug output. Screen prints are a
recommended method of obtaining a hard copy version of these messages.

For Windows: The Windows equivalent of the tee command is available with the purchase of the
Windows Services for UNIX Add-On Pack. Please see http://www.microsoft.com/technet.

SQL*Plus scripts

The following General SQL*Plus procedures are provided to assist you.

delrslt.sql Delete rows from GJBRSLT table.

dyndflt.sql Default parameters for dynamic SQL
procedures.

gchkbgrt.sql Builds grants for the security owner to give it full
access to all Banner tables installed for which it
has no grants at all.

gchkemail.sql Validates e-mail addresses on file in GOREMAL
to ensure that an e-mail address will have an
ampersand (@) and a period (.). The script also
lists duplicate e-mail addresses that are found
based upon case insensitivity per PIDM per e-
mail type at the end of the report.

gchksec.sql This SQL routine tests for all requirements for
role-level security.

gchksecrole.sql A SQL routine to test for local roles that do
not adhere to the Banner suggested naming
conventions that are used in providing access to
Banner forms.

gchksyn.sql Generates an SQL routine to create all missing
Banner public synonyms.

gchkuser.sql A script called by GUPUSER to verify that the
upgrade_owner has all the required database
objects.

gcreuser.sql Creates the upgrade_owner and its required
database objects.

gdeleqer.sql Deletes rows from the Event Queue Error table
based on a date.

gdeleqrc.sql Deletes rows from the Event Queue Transaction
tables based on a date.

©2018 Ellucian. Confidential & Proprietary 155

http://www.microsoft.com/technet

Reports and Processes

gdelintl.sql Implementation of Multivisa 5.5. Deletes
rows from the international tables GOBINTL,
GORVISA and GORDOCM from SPRINTL.
Revised for 7.3 redesign. Run before
gselvisa.sql, gupdvisa.sql, and gdelsdaxvisa.sql.

gdeljobs.sql Removes rows from job submission tables for
products not available on your system.

gdeloutp.sql Deletes rows from the Jobsub Database Output
tables based on a date.

gdelprun.sql Deletes leftover GJBPRIN entries for the
GLOLETT program before recompiling. Used
during upgrades only.

gdelsdaxvisa.sql Deletes GTVSDAX international rows. Run after
gselvisa.sql and gupdvisa.sql.

gdiscon.sql Disables constraints that should remain
disabled.

gdroptab.sql Drops the GUBSMOD and GURSSQL tables
before importing them. Used only during
upgrades.

gdrpsyn.sql Drops public synonyms for Banner objects
which no longer exist. Used only during
upgrades.

gefixadd.sql SQL*Plus script to set the from_date on
SPRADDR records to the activity date when
both from and to dates are null. Only to be run
when BannerQuest is installed.

genalug.sql Grants option for advancement tables.

gencimg.sql Grants for courts tables and views.

genfimg.sql Grants option for finance tables.

genford.sql General foreign grant driver script.

genforg.sql Script that contains grants for INTEGMGR
(Integration Manager).

genpayg.sql Grants option for human resources tables.

genresg.sql Grants option for financial aid tables. Replaces
GENFAIG.SQL.

genstug.sql Grants option for student tables.

gentrag.sql Grants option for accounts receivable.

gfgacdroppol.sql Script that drops policies on a table for package
GOKFGAC.

©2018 Ellucian. Confidential & Proprietary 156

Reports and Processes

gfpiiaddpol.sql Script that adds policies for tables identified in
GORFDPI.

gfvbsaddpol.sql Script that adds FGAC policies for tables
identified in GORFDPL.

ggivedba.sql Script used during the upgrade to alter the users
involved with the upgrade to include the DBA
role as one of their default roles. The script also
generates a file used to restore the roles to what
they were before the upgrade.

ggrtfnc.sql Script can be used to generate grant execute
statements to functions for users requiring
execute privileges for SDA views.

ggrttmp.sql Create temporary table used to build grants.
This table only exists for the duration of this
process.

gindex.sql Creates a report of indexes for a schema owner.

ginsprun.sql Inserts gjbprun rows for variables to be
recompiled. Used only during upgrades.

gletgrts.sql Upgrade script to give the General product the
ability to run GLOLETT and GLBPARM during
the upgrade.

glramod.sql Process to check if specific modifications have
been applied to the database.

gmakalt1.sql GOSTAGE script which invokes guraltg.sql.

gmakgrt.sql This process builds grants for the table names
loaded into the GUBGRNT table.

gmakgrtv.sql New routine to save grants, then re-issue them
from BANINST1.

gnestedv.sql Utility script that lists nested variables. Used
during upgrades.

gnewgrt.sql Generates end user grants.

gostage.sql This process is the heart of the upgrade
process. It determines what modifications in the
GUBSMOD and GURSSQL tables have to be
applied to your system.

greadme.doc A text file that lists and describes all the scripts
in the general/plus directory.

gresroled.sql This script starts a spooled script, gresrole.sql,
that was generated by ggivedba.sql to restore
the original roles.

©2018 Ellucian. Confidential & Proprietary 157

Reports and Processes

grunsiz.sql This process runs all the standard table
sizing model scripts. The start for this file is
automatically generated by the glramod routine.
Used during the upgrade process.

gsafobj.sql SQL routine used during upgrades to register
changes to an object if it exists.

gsanobj.sql Adds new objects to bansecr's security tables.
Used during upgrades.

gsaoobj.sql Deletes obsolete objects from bansecr's security
tables. Used during upgrades.

gsdrslt.sql Deletes any leftover GJBRSLT records for the
staging job.

gselappl.sql This script will extract the application and the
creator of components of the application so the
user will know what to respond with and who
to sign on as when running GLBPARM and
GLOLETT.

gselsevs.sql Data fields GORSEVS_ISSUE_COMMENT and
GORSEVS_TRANSFER_COMMENT are no longer
used for SEVIS reporting. This script allows
users to retrieve data from the latest history
record.

gselvisa.sql Selects form GORVISA for GTVSDAX
records that are retired from use. Run before
gupdvisa.sql and gdelsdaxvisa.sql.

gsirslt.sql Inserts a record in the results table to indicate
the task completed successfully.

gskipgrt.sql Script which skips the generation of end user
grants. Used during the upgrade process.

gstrslt.sql Test if a hosted SQL*Plus routine succeeded.
This routine tests if the hosted routine was able
to insert a row into the GJBRSLT table. If the
row is not found an SQL error is caused that will
stop the current routine.

guidmod.sql Insert history record into the
GENERAL.GURDMOD table. Used during
upgrades.

guitmod.sql Insert history record into the
GENERAL.GURDMOD table if the mod has not
already been recorded. Used during upgrades.

guovmods.sql Script to create view GUVMODS under the
upgrade_owner created through gupuser.sql.

©2018 Ellucian. Confidential & Proprietary 158

Reports and Processes

gupdintl.sql Conversion script to migrate data from SPRINTL
in General 5.5. Conversion script revised for the
redesign of GORVISA for 7.3.

gupdvisa.sql Script to updated gorvisa and gordocm columns
to null for old GTVSDAX international values.
Run after gselvisa and before gdelsdaxvisa.sql.

gupuser.sql Script to create an upgrade user account to be
used in parallel upgrades.

guraltb.sql This utility script will spool off a sqlplus script to
compile all functions that are not valid and views
owned by BANINST1.

guraltg.sql This utility script will spool off a sqlplus script
to compile all functions that are not valid and
views. Used by the gostage process.

guraltr.sql This utility script will spool off a sqlplus script
to compile all functions that are not valid and
views.

guramod.sql Create the table used to build the modification
scripts.

gurcmnt.sql Creates COMMENT ON COLUMN statements
for a table in proper format to an Oracle
directory.

gurcmod.sql Process to check if specific modifications have
been applied to the database. Information is
placed into the guramod table indicating what
scripts have been executed already and what
ones still have to be run.

gurcmpa.sql Spools a script to compile all database objects
that are not owned by either SYS or SYSTEM.

gurconsumer.sql Script to provide privileges to enqueue and
dequeue messages to Oracle users.

gurcrypt.sql Script to encrypt all passwords.

gurddoc.sql Script to extract database object comments.

gurdlid.sql Script used to delete all information about a
PIDM in the database.

gurdmod.sql Create the table to track database modifications.

guremod.sql This process is executed at the end of each
products xREVTAB and xREVIEW script.
This process extract information stored in
the guramod table for this user ID and then
executes it.

©2018 Ellucian. Confidential & Proprietary 159

Reports and Processes

gurespl.sql Script to generate an exit statement and close
the spool file.

gurethnicity.sql Script to capture race and ethnicity in SPBPERS
and GORPRAC.

gurfgrt.sql Generates an intermediate sql routine that will
issue a foreign grant for a table only if it exists.
You must be logged on as system to use this
routine.

gurgfix.sql Script to generate and create any missing grants
after the security patch has been applied.

gurgfix2.sql Script to generate and create any missing grants
after the security patch has been applied. Use
this script instead of GURGFIX if your institution
does not use Banner Self-Service.

gurgrnt.sql Creates a file of GRANT statements based
on a model user (replaces GRANTS in the
ORATOOLS directory).

gurgrt3.sql Script to grant execute on the BANINST1-owned
stored procedure passed as the first argument
to the e~Print user.

gurgrtb.sql Script to grant execute privilege on the
BANINST1-owned stored procedure passed as
the first argument to Banner owners and roles.

gurgrth.sql Script to grant execute privilege on the
BANINST1-owned stored procedure passed as
the first argument to local web server user IDs.

gurgrti.sql Script to grant execute privilege on the
BANINST1-owned stored procedure passed as
the first argument to the Integration Manager.

gurgrts.sql Script to grant execute privilege on the
BANINST1-owned stored procedure passed as
the first argument to the Banner security owner.

gurgrtw.sql Script to grant execute privilege on the Web
Tailor-owned stored procedure passed as the
first argument to the Banner stored procedure
owner, the database roles, and the local web
server user IDs.

gurlsid.sql Lists of all tables and columns in which a person
exists.

guromod.sql This process is executed at the beginning
of each products xREVTAB, xREVIEW and

©2018 Ellucian. Confidential & Proprietary 160

Reports and Processes

xTABCLN script to delete any old entries left in
the GURAMOD table for this user ID.

gurospl.sql Script to set SQL*PLUS options and open a
spool file names by parm1. This script is always
used by a driver script.

gurrddl.sql Script to PL/SQL script which generates DDL
syntax for a specified table(s).

This script was made obsolete in Release 8.1
favor of data definition language (DDL) tools
provided by Oracle. Oracle's Metadata API
and DBMS_METADATA package provide more
extensive functionality than gurrddl.sql did, and
will remain current with future Oracle updates.
For more information, see Oracle Database
Utilities and PL/SQL Packages and Types
Reference in Oracle's technical documentation.

gurrhmu.sql Script that invokes a refresh of the hierarchial
menu table GURHMNU.

gursava.sql SQL routine that creates SQL*PLUS define
commands that contain all the information need
to recreate a table the same size and in the
same place that it currently exists.

Cluster information is not retained.

gursava2.sql SQL routine to save index/table info no matter
who owns it.

gurscls.sql This script checks every person enrolled in
the class to make sure they have been given
execute privileges to every role used by any
object in the class.

gurstop.sql Invoke this routine to stop job submission.

gurtgr1.sql This routine is used by the GURTGRT routine to
build grants for a new table based on grants for
an existing table.

gurtgr2.sql Copy Best Guess generated grants from the
work table to a spool file. The output from
this select is ordered by grantor to reduce the
number of connect commands that must be
executed.

gurtgr3.sql Generate report for the best-guess grants
generated by GURTGRT and GURTGR1.

gurtgr4.sql Script to generate grants for views using tables
as model. Used during upgrades.

©2018 Ellucian. Confidential & Proprietary 161

Reports and Processes

gurtgr5.sql Script to generate grants for tables based on
another owners table. Used during upgrades.

gurtgrt.sql Generates an intermediate sql routine that will
create grants to access a new table based on
existing grants for a similarly used table. You
have the option of using up to three tables to
match. You should be logged on as the grantor
(owner of the new table) to run this routine.

gurtgrto.sql Used in conjunction with GURTGR5.

gurtgrtv.sql Used in conjunction with GURTGR4.

gurtlst.sql Produces list and description of a Banner
product's tables.

gurtprt.sql Prints contents of a specified table.

gurutlrp.sql This utility script calls Oracle’s utlrp routine
which validates database objects in dependency
order. A report is spooled.

gurvlst.sql Produces list and description of all validation
tables in a Banner product.

gutemod.sql This process is executed at the end of each
products xREVTAB script. This process extract
information stored in the guramod table for this
user ID and then executes it.

gutfmod.sql Process to prime the gurdmod table if the
constraint exists.

gutnmod.sql This script will insert a row in the gurdmod if the
specified object does not exist. This would be
used to conditionally run an upgrade script only
if the table is present.

gutpmod.sql Process to prime the GURCMOD table based on
an objects existence.

guttmod.sql Process to prime the GURCMOD table based on
columns existence.

iobseqn.sql Primes the SOBSEQN table after creation.

login.sql Default SQL*Plus Login parameters.

repdflt.sql Default SQL*Plus parameters to produce a
report.

sleepcms.sql This is a generic SQL process for VM/CMS
which causes operating-system-dependent
command procedures to be executed for
batch processes which require sleep/wake
capabilities.

©2018 Ellucian. Confidential & Proprietary 162

Reports and Processes

sleepdec.sql This is a generic SQL process for OpenVMS
which causes operating-system-dependent
command procedures to be executed for
batch processes which require sleep/wake
capabilities.

sleepunx.sql This is a generic SQL process for UNIX which
causes operating-system-dependent command
procedures to be executed for batch processes
which require sleep/wake capabilities.

Sleep/wake methods

Banner provides two different methods for running jobs in a cyclical, or sleep/wake, mode.

Method One

The first method uses OS command scripts and an SQL*Plus script to cause the job to run in a
cyclical fashion. These jobs must be submitted from the operating system prompt and must be
terminated manually. To compile programs to run in this fashion, you must define NO_SLEEP_SW as
a pre-compiler directive to exclude the code used by the second technique.

Seven programs are affected by the value NO_SLEEP_SW as a pre-compiler directive:

• sfrschd.pc

• shrtrtc.pc

• tgphold.pc

• tgrmisc.pc

• tgrrcpt.pc

• tsrcbil.pc

• tsrssum.pc

Note that NO_SLEEP_SW only affects the Student and Accounts Receivable processes.

UNIX

The first command procedure, sleepunx, prompts for parameters needed by the second procedure
and SQL*Plus script, sleepunx.shl and sleepunx.sql respectively.

This procedure then starts (or submits) sleepunx.shl, which in turn starts sleepunx.sql. The
SQL*Plus script sleepunx.sql will spool OS-specific commands to run the job into a file,
provided there is actually work to do as determined by the parameters previously entered. When
the SQL*Plus script exits, sleepunx.shl executes the spool file. The parameters needed by the
program are contained in a XXXXXXX.dat file which are read through input redirection when the job

©2018 Ellucian. Confidential & Proprietary 163

Reports and Processes

executes. The second command procedure sleepunx.shl then sleeps for the specified interval,
awakes, and loops back to start the SQL*Plus script again.

To define NO_SLEEP_SW on UNIX, go to sctproc.mk and find the lines:

Other C options

CCOPT=

Change these lines to:

Other C options

CCOPT=-DNO_SLEEP_SW

OpenVMS

This is essentially the same as for UNIX. The script names are sleep.com, sleepdec.com, and
sleepdec.sql. Command input redirection is accomplished by defining sys$input as the .dat
file. The “sleeping” is done with the “wait” command.

To define NO_SLEEP_SW on OpenVMS, specify p2 as a placeholder so you can get to p3. Specify
the following additional macro definition:

@gen$com:sctproc sfrschd “limited” “NO_SLEEP_SW”

Save this change and recompile all sleep/wake programs which will be affected by the change.

Note: This option should be done for programs which are run using Method 1 of sleep/wake mode.

Windows

Method one is not valid for Windows platforms.

Method Two

The following Banner systems and processes are valid for the Sleep/Wake processing described in
this section.

Banner Student

SFRSCHD- Student Schedules

SHRTRTC- Academic Transcript

©2018 Ellucian. Confidential & Proprietary 164

Reports and Processes

Banner Accounts Receivable

TGRRCPT- Account Receipt

About this task

TGRMISC- Miscellaneous Receipt

TSRCBIL- Student Billing Statement (Invoices)

TSRSSUM - Student Transaction Summary Report

Procedure

1. Define printer and print command on the Printer Validation Form (GTVPRNT). In the Printer
Code field, enter a name to reference each specific printer that may be used for printing output
from sleep/wake processing. In the Command field, enter the correct operating system print
command as it would normally be entered from the command line prompt, substituting an @ (at
sign) as the place holder for the file name to be printed.

UNIX example: lp -d talaris1 @

OpenVMS example: print/queue=ln01 @

Windows example: print /d:\\sctrnt0\XeroxDC230 @
2. On the appropriate System Distribution Initialization Information Form (SOADEST for Student

or TOADEST for Accounts Receivable), enter the printer Code from GTVPRNT that should be
identified with the collector table rows that will be inserted to the appropriate tables when on-line
application forms create a request for output that can be generated by sleep/wake processing.

The collector tables are as follows:

Process Collector Table

SFRSCHD SFRCBRQ

SHRTRTC SHTTRAN

TGRMISC TBRCMIS

TGRRCPT TBRCRCP

TSRCBIL TBRCBRQ

3. On the Process Submission Control Form (GJAPCTL), for the valid sleep/wake jobs listed
previously, enter the correct response for the parameter that specifies that the job should be
processed for collector table entries. Refer to the documentation for each specific process to
determine the appropriate response in each case (correct responses may be COLLECTOR,
Y, %, etc.). In addition, each sleep/wake job has a printer code parameter. You must specify
exactly the same code for this parameter answer that was entered on either SOADEST or
TOADEST. Enter Y for the run in sleep/wake mode parameter and specify the number of
seconds for the sleep/wake interval (cycle) for each process.

©2018 Ellucian. Confidential & Proprietary 165

Reports and Processes

Note: Do not enter the printer code in the top block of GJAPCTL; only enter it in the parameter
section.

4. The Sleep/Wake Maintenance Form (GJASWPT) should be used to stop the sleep/wake
process or to change the sleep interval. A process name and printer code must be entered in
the key. A LIST of values is available in each field to see the valid list of processes and printer
codes that have ever been submitted for sleep/wake processing.

To stop the process, enter N in the Continue to Run field and SAVE. The job will not stop
immediately, but rather will stop after the next time the process 'wakes up' and finishes the next
processing cycle. To change the sleep interval, enter the desired interval in the Next Cycle Time
field and save.

The GJASWPT form can also be used to view statistics regarding how many rows were
processed for the most recent wake-up cycle and the total number of rows processed since
the process was initiated. You can also determine if the processes terminated abnormally. by
viewing the Abnormal Termination field. If there is a Y in Abnormal Termination, something
caused the process to fail. You should review log files to determine the cause.

Print the saved output

You can enable the Job Submission saved output for Method Two Sleep/Wake processes. This
option is only available on non-Windows operating systems. The report files created by the Sleep/
Wake process are uploaded to GJAJLIS. The reports may be optionally converted to PDF.

Procedure

1. Enable the Method Two process on the JobSub Output Definition (GJAJBMO) page.
You can adjust the MIME type to PDF and select the appropriate font and font size.

2. Create a printer on the Printer Validation (GTVPRNT) page for the print and save the output.
3. If the output is going to be printed externally to the Job Submission server using the Banner

Print App, add the printer to the Local Print Printer Definition (GJALCPR) page.
4. Set the GTVPRNT command sh gjrjlis_sw.shl @ printername “lp –p printer

name” for the printer described in step 2 on page 166.
The @ is a placement for the print output file name. The command parameter printername is
the name of the printer written to the GJRJLIS record. The last parameter lp –p printername is
the print command executed by the shell gjrjlis_sw.shl if the print is to occur from the Job
Submission server.

5. Enter the GTVPRNT printer that has the gjrjlis_sw.shl command, on the printer
destination page.
The Sleep/Wake process is submitted with same printer in the parameter for the Sleep/Wake
printer.

©2018 Ellucian. Confidential & Proprietary 166

Reports and Processes

Operating systems without sleep/wake-up commands

Operating systems which do not have sleep commands, or whose sleep commands may not be
executed by user programs, must use the Method One.

NOSLEEP Triggers

NOSLEEP Triggers is an alternative method to that of using sleep/wake processing. Placing a
trigger on an associated collector table is used to put forth the action of running the desired process
on-demand.

Processing jobs through sleep/wake generates a substantial amount of redo log activity. Each time
an individual sleep/wake process wakes up to see if there is anything new in the collector table to
act upon, an update to a table is performed recording the wake up. Even when there is no activity
for the sleep/wake processes to act upon, redo logs continue to fill up and go to disk archival. This is
due to the constant wake-up time stamping activity of numerous sleep/wake processes. NOSLEEP
Triggers eliminates this excessive redo log/archival log activity, saving significant archive log disk
space (in addition to reducing the number of archived logs that would be required for a database
restore).

Processing jobs through sleep/wake can also involve starting a process for every printer involved in
a particular process. For example, if there are 50 possible receipt printers, there must be 50 sleep/
wake processes started to support them. NOSLEEP Triggers eliminates the need to start any such
constantly running (cycling) processes.

The implementation of NOSLEEP Triggers is not mandatory nor does its implementation cause a
migration to a NOSLEEP Triggers as the only way of processing. As stated, NOSLEEP Triggers is
provided as an alternative to sleep/wake. Its implementation can be with as many or as few triggers
as required. You can configure some processes to be handled through NOSLEEP Triggers and
some other processes to be handled with sleep/wake. The NOSLEEP Trigger method can co-exist
with the sleep/wake method. You can switch from a sleep/wake to a NOSLEEP Trigger or vice-
versa, for any particular process. However, you need not set up a particular process to run for both
sleep/wake and NOSLEEP Triggers processing.

New database package

The following database package is new.

GOKNOSL

This package was derived from the Community Source Initiative artifacts (LKH) on February
2010, initial release of primary package in support of the AR segment NOSLEEP Triggers.
Package procedures are called from primary AR TOKNOSL package procedures as invoked from
corresponding AR NOSLEEP Triggers.

This package simulates the submission of job for processing on behalf of the Oracle user id
NOSLEEP. If errors are encountered with gurjobs during trigger processing, they are recorded in
gurtklr row (for user id NOSLEEP) and can be viewed using GUAMESG form.

©2018 Ellucian. Confidential & Proprietary 167

Reports and Processes

Changed database packages

The following database packages have been changed.

GSPCRPU

This is an added procedure, with logic encapsulated/hidden within the package body, passing in raw
and out string in support of NOSLEEP password decryption.

GB_ADVQ_UTIL

Modifications in support of NOSLEEP Triggers Community Source initiative. The syntax
PRAGMA AUTONOMOUS_TRANSACTION on procedures p_enqueue_msg_fragments,
p_dequeue_msg_fragments, and p_dequeue_msg_fragments_condit was necessary in that
these queuing transactransactions are firing within the parent transaction issued from the NOSLEEP
Triggers.

Changed Job Submission related database objects

The following Job Submission related object has been changed.

gjajobs.shl

NOSLEEP Triggers Community Source initiative project. LKH, February 2010. Add sleep delay for
NOSLEEP jobs. This is intended to give time for NOSLEEP setups to commit before attempting to
retrieve inserted data in GJBPRUN.

Change in the NOSLEEP userid password

If the password for the NOSLEEP userid is changed in the database (GSASECR), that same
password value needs to be applied and encrypted in the NOSLEEP Trigger support tables. If the
same password value is not applied and encrypted, processes submitted by a NOSLEEP Trigger
encounter the ORA-01017: invalid username/password; logon denied error.

The gnosleep_adjpw.sq script is run to update the NOSLEEP password value in the NOSLEEP
Trigger support table. The password value provided to the script needs to be identical to what has
already been established in the corresponding database. After the gnosleep_adjpw.sql script is run,
the gsnosleep_setup2.sql script should be run immediately to encrypt the password value that was
just provided.

The gnosleep_adjpw.sql and gsnosleep_setup2.sql scripts are found in the $BANNER_HOME
\general\plus folder. They were migrated to this folder as part of Banner General 8.9 version.

©2018 Ellucian. Confidential & Proprietary 168

Reports and Processes

Job Submission

While the external mechanics of submitting a job is the same across all operating systems, the
internal processing is operating system specific. Because of differing releases of the OS and local
modifications that may have been made, these procedures may not run exactly as delivered.
Therefore, some modifications may be required.

Before a job can be submitted, it must be defined on the Process Maintenance (GJAJOBS) form
and the appropriate security privileges must be granted for the object. Information from this form
and from the O/S field found on Installation Control (GUAINST) form control how the command
to run the job is built. On the GJAJOBS form, the Type field indicates the type of program to be
executed.

There are four job types:

1. C - Pro*C program
2. E - Standalone COBOL program. Banner no longer has any type E jobs, the value remains for

compatibility. These types of jobs may not use parameters because no mechanism is provided
to pass them.

3. P - Procedures. These types of jobs cause operating system specific scripts to be run. (Bourne
Shell, VAX/OpenVMS command procedure, or Perl).

4. R - Oracle Report

The Command Name, if entered, will be used as the actual name of the program to run. If it is
null, the Name from GJAJOBS will be the name of the program to run. This field should never
contain an extension. The extension, if needed, is appended by either the Job Submission Interface
(GUQINTF) form or the operating system specific GJAJOBS command procedure.

Jobs may be submitted from either a product’s application form or from General’s Process
Submission Control (GJAPCTL) form.

Note: For more information on processing PL/SQL packages through Job Submission, see Process
PL/SQL packages with JOBSUB on page 191.

Jobs submitted from GJAPCTL

The GJAPCTL form provides for the entry and editing of parameters and executes any process level
validation associated with the job. Process level validation is defined on the GJAJOBS form in the
Validation field and refers to the name of a procedure contained in the product specific validation
package stored in the database.

The name of the package is the product’s system indicator, as defined on the System Indicator
Validation Form (GTVSYSI), appended with the literal OKPVAL; General’s package is GOKPVAL.

Parameters are inserted into the Process Run Parameter Table (GJBPRUN) using a unique
sequence number generated from General’s GJBPSEQ sequence to identify the job request.
The GJAPCTL form then sets global.call_form to GJAPCTL and calls the GUQINTF form
(described later).

©2018 Ellucian. Confidential & Proprietary 169

Reports and Processes

Jobs submitted from the GJAPCTL form will always use GJAJOBS as the command procedure to
run. Depending on your operating system and the type of job being run, the GJAJOBS command
procedure may further modify the command name passed to it from the GUQINTF form.

For example, in the UNIX environment GJAJOBS.SHL constructs the operating system command
as follows:

• For E type jobs - the jobs name is prefixed by the COBPREF environment variable and suffixed
by the COBSUFX environment variable.

• For P type jobs - the literal .shl is appended to the end of the command name.
• For C type jobs - the command name is not modified.

If the command name for a type P job had specified an extension, another one would be added
automatically.

Note: Interactively entering job parameters from the host is no longer supported. Parameters for all
jobs must be entered on GJAPCTL.

Reset job submission sequence number

You may reset the job submission sequence number back to a value of 1.

Warning! Before resetting the job sequence number, ensure that a backup is created and the
procedure is tested in a TEST system before applying to PROD.

Note: Banner Financial Aid uses GJBPSEQ to generate the log numbers that uniquely identify
changes to be processed by the RLRLOGG logging process. Before resetting the job sequence
submission number, the Financial Aid “mirror logging tables” must first be emptied by running
RLRLOGG to successful completion for all possible aid years. The mirror tables in Banner Financial
Aid are as follows:

RLRAPP1

RLLAPP2

RLLAPP3

RLLAPP4

RLLAPP5

To reset the job submission sequence number, execute the following:

SQLPLUS GENERAL/PASSWORD
delete from GENERAL.GJBPRUN;
DROP PUBLIC SYNONYM GJBPSEQ;
DROP SEQUENCE GENERAL.GJBPSEQ;
create sequence GENERAL.GJBPSEQ
increment by 1
start with 1
maxvalue 99999999
minvalue 1

©2018 Ellucian. Confidential & Proprietary 170

Reports and Processes

nocycle
cache 20
order ;
create public synonym GJBPSEQ for GENERAL.GJBPSEQ;

You may also want to clear the GJIREVO database tables related to job submission to avoid
inserting duplicate run sequence numbers. To remove all data in the GJIREVO table, execute the
following:

sqlplus general/password
delete from general.guroutp;
delete from general.guboutp;
commit;
exit;

Note: If you are running Appworx, please confirm it is functioning correctly after resetting the
sequence.

Jobs submitted from application forms

Requests from application forms typically do not allow you to enter parameters because they are
usually obtained from information contained on the form itself. The application form will usually
assign values to globals, then call the GUQINTF form. GUQINTF is discussed below.

If the job is to be submitted from a form other than GJAPCTL, a command procedure must exist
for the job. If the Command Name field on the GJAJOBS form is not used, the job name itself is
used as the name of the command procedure. These types of requests are handled by a call to the
GUQINTF form which builds the initial host command. Again, depending on the operating system,
an extension may be added to the command name before it is executed. Before calling GUQINTF
the global named GLOBAL.JOB_ID is set to the name (without extension) of the program to be
executed and the global named GLOBAL.CALL_FORM is set to the name of the current form. If the
GJBPRUN table has been populated with parameters, the global named GLOBAL.ONE_UP_NO, is
set to the one up number used when the rows were inserted.

If the program is to be executed immediately from a form and the operating system is OpenVMS, a
symbol will need to be created (see GUASENV.COM).

The GUQINTF form

The GUQINTF form performs several tasks. First, the WHEN-NEW-FORM-INSTANCE trigger tests
GLOBAL.CALL_FORM to see if the request came from GJAPCTL. If it did, the form level trigger
JS_HOST_COMMANDS is executed.

This trigger builds a message containing the following information:

Command Name GJAJOBS

job type A one-character code representing the type of
job:

©2018 Ellucian. Confidential & Proprietary 171

Reports and Processes

Command Name GJAJOBS
E - executable COBOL program

P - operating system command procedure

C - PRO*C

user_name Current Oracle username or alternate username
if entered on the Alternate Logon Verification
Form, (GUAUIPW).

password Password for username.

one_up_no One-up number generated from the GJBPSEQ
sequence.

printer name Comes from the GJAJOBS form or the
GJAPCTL form.

special forms name Comes from the GJAJOBS form or the
GJAPCTL form.

submit time This is from the GJAPCTL form and is currently
only passed to the GJAJOBS procedure. No
mechanism exists in the procedure to schedule
the job due to the wide variety of supported
operating systems.

Requests submitted from forms other than GJAPCTL come in two types: those that populate the
GJBPRUN table before calling GUQINTF, and those that don’t. If the form does not populate the
GJBPRUN table, login must exist in the GUQINTF form to do it.

For example, requests coming from the TSASPAY form execute the form level trigger
STUDENT_PAYMENT which forces an update to the GJBPRUN table.

The block level POST-INSERT or POST-UPDATE trigger fires then, executing a common trigger to
actually do the inserts.

The STUDENT_PAYMENT trigger is executed immediately before the HOST_COMMANDS trigger in
the WHEN-NEW-FORM-INSTANCE trigger. The HOST_COMMANDS trigger is then builds a message
containing this information:

command name Either the job name or the command name
from the GJAJOBS form. Then, based on the
operating system as defined on GUAINST, an
extension may be added or a prefix may be
added. On Windows platforms, perl prefixes the
command name. On UNIX, .shl is appended.

user_name Current Oracle username or alternate username
if entered on the Alternate Logon Verification
Form, (GUAUIPW).

password Password for username.

©2018 Ellucian. Confidential & Proprietary 172

Reports and Processes

one_up_no One-up number generated from the GJBPSEQ
sequence.

job name Either the job name or the command name
without an extension (uppercase).

directory Name of the directory where output from the job
will go.

After this message is built, the form level trigger PIPEIT is executed which sends the message
to the GURJOBS application server program by executing the DBMS_PIPE.SEND_MESSAGE
function. If the Advanced Queuing alternate communication mechanism has been implemented (an
alternative to DBMS_PIPE), instead of the PIPEIT trigger being executed, the local PL/SQL unit
AQIT is executed, sending the message to the queue GURJOBS_Q, which is then dequeue by the
GURJOBS application server program.

After sending the message, requests that came from the GJAPCTL form return to that form
immediately. Requests coming from other forms perform one more trigger named GET_STATUS.
This trigger reads the External Process Results Table (GJBRSLT) to check for a message inserted
by the batch job. The lack of an entry results in an error message being displayed stating that the
job failed.

Note: If the program does not use the GJBRSLT table, the GET_STATUS trigger still needs to be
executed because globals are set which indicate success or failure. Returning to the calling form
without setting these globals could result in unpredictable results.

When GURJOBS receives the request, it fulfills it by executing the system function, using the
command as the argument. See the section on GURJOBS for more information.

The following sections outline the processing for each of the currently supported operating systems.

UNIX

A UNIX shell program called gjajobs.shl is started by the system function.

gjajobs.shl

This shell interrogates the parameters passed to it and builds another temporary shell to actually run
the job. The temporary shell consists of either the commands to execute and print a report, (based
on a parameter from the GJAPCTL form), or commands to invoke a customized procedure for this
job depending on the definition of the job on the GJAJOBS form.

The gjajobs.shl then sets the following environment variables so they can be accessed by the
started procedure, if necessary.

BANUID The userid being used to run the job.

FORM Special print options as specified on GJAJOBS
or GJAPCTL.

©2018 Ellucian. Confidential & Proprietary 173

Reports and Processes

H The HOME directory.

JOB The name of the Job or Process to be executed.

LOG Log file name.

ONE_UP The one up number assigned at the time the job
was submitted.

PRNT The name of the Printer as specified on
GJAJOBS or GJAPCTL.

PRNTOPT The complete print command built from PRNT
and FORM

PROC The name of the .shl file to be run.

PROG The name of the program to run, as indicated in
the key block of GJAPCTL.

PSWD The password for the BANUID.

SUBTIME The submit time as specified on GJAPCTL. This
parameter is not currently implemented.

TEMP This is the prefix of the generated shl. It is
constructed by the concatenation of the process
name ($1) and the one up number ($5).

UIPW The concatenation of BANUID/PSWD.

MIME The Output Designation Type defined for Banner
9 on the GJAJBMO page. Types are PDF And
Plain Text. Results of the output are stored in
GJRJLIS ($9).

FONT Font type for PDF Mime Type ($11).

FONT_SIZE Font size for PDF Mime Type ($12).

STORAGE_DAYS Number of days to retain output ($9).

ONPREM_PRINT The printer from GJALCPR ($10).

While the variables PRNT and FORM are made available to the procedure, only primitive print
routing and special forms processing are addressed in the shell due to the vast variations in
print managers. Customizing will probably be required to conform to the installation specific print
programs.

The gjajobs.shl then invokes the generated shell to run the report or customized process as a
background process. Control is then returned to the Banner on-line system and the user may
continue work while the job executes.

Where possible, the system removes all intermediate and temporary files based on the assumption
that jobs run without error in production. The deletion of these files reduces the need for frequent
directory maintenance. Occasionally, the need may arise during implementation and training to
preserve the intermediate and temporary files to monitor job summary statistics or possible process
errors. In this case, you must modify gjajobs.shl so that it does not delete these files.

©2018 Ellucian. Confidential & Proprietary 174

Reports and Processes

If you create any new processes of your own, make sure they are accessible through the path of the
account used to submit GURJOBS.

umask value for gjajobs.shl

Depending on how your environment is set up, you may want to change the delivered 000 values
set by umask for gjajobs.shl to make files more secure.

If jobsub and the users are in different groups you may need to use umask 000. If they are in the
same group you could use 017. If all reports are run to the database and server access is not
required then you could use 077.

To change the default permissions assigned to your UNIX files and directories, use the umask
command. Its format is umask nnn where nnn is a three-digit code that defines the new default
permissions.

Warning! Although they look similar, the umask string does not have the same format as the
chmod permission string.

Each of the three numbers represents one of three categories: user, group, and other. The value for
a category is calculated as follows:

• read (r) permission has a value of 4
• write (w) permission has a value of 2
• execute (x) permission has a value of 1

Sum the permissions you want to set for the category, then subtract that value from 7. As an
example, examine the current default umask statement that is used to assign the file protections -
rwx-r-x--- :

umask 027

The user category value is 0 because r + w + x = 4 + 2 + 1 = 7. When this is subtracted from 7, the
value is 0.

The group category value is 2 because r + x = 4 + 1 = 5. When this is subtracted from 7, the value is
2.

The other category value is 7 because no permissions = 0. When this is subtracted from 7, the
value is 7.

For example:

umask 000 Set default to allow full access to everyone
 touch test.000 Create file test.000 showing the resulting
 permissions
 umask 017
 touch test.017
 umask 022
 touch test.022
 umask 027
 touch test.027

©2018 Ellucian. Confidential & Proprietary 175

Reports and Processes

 umask 077
 touch test.077 Allows access to only the owner
 ls -l test.* (execute access (x) does not display for non-
executables)
 -rw-rw-rw- Jun 12 12:04 test.000
 -rw-rw---- Jun 12 12:05 test.017
 -rw-r--r-- Jun 12 12:05 test.022
 -rw-r----- Jun 12 12:05 test.027
 -rw------- Jun 12 12:05 test.077

It is important to note that files created by the jobsub process are not owned by the same user
as the user for whom the process is being run. For example, if SAISUSR submits GLOLETT then
glolett_12345.log and glotlett_12345.lis will be owned by the account running jobsub,
not SAISUSR. If reports are run to the database and viewed by GJIREVO, then this may not be an
issue. However, if the reports needs to be accessed on the server then this may be a concern.

To determine which group a user is in, use this command: id <username>

For example:

id user001

uid=6356(user001) gid=401(banner

Windows platform

Currently Windows NT and Windows 2000 are supported.

Several scripts are used in the submission of jobs on Windows. Additionally, job submission makes
uses of a perl module, sctban.pm, sometimes referred to as an include file, to perform many
common tasks such setting up the environment and printing output. All global subroutines contained
in sctban.pm are prefixed by sctban, and all global variables set are prefixed by sctban. If you
write any perl scripts of your own and want to use the subroutines contained in sctban.pm, you
must include a use sctban statement before using any of the common routines or runtime errors
will result. This should be followed immediately with:

&sctban_determine_os; &sctban_os_specific_env;

For an example, please refer to the section that describes gurjobs.pl.

Initially, a perl script called gjajobs.pl is started by the system function call in GURJOBS. gjajobs.pl
establishes an execution environment by calling the sctban_os_specific_env function. How
the values for the variables are obtained is controlled by the BANENV environment variable. BANENV
is set from the Control Panel -> System - > Environment tab. A value of REG for BANENV indicates
to set variables based on their value in the System Registry. A value of ENV means to use the
value currently assigned to the environment variable first, and, if not set, default the value from the
registry.

Next, the following variables are established:

$sctban_process_name $ARGV[0]

$sctban_process_type $ARGV[1]

$sctban_user_id $ARGV[2]

©2018 Ellucian. Confidential & Proprietary 176

Reports and Processes

$sctban_password $ARGV[3]

$sctban_oneup_number $ARGV[4]

$sctban_printer_name $ARGV[5]

$sctban_form $ARGV[6]

$sctban_submit_time $ARGV[7]

Note: These are the arguments passed to gjajobs.pl as described above in the section on the
GUQINTF form.

The sctban_jsub_env function is called to set additional environment variables followed by a
call to sctban_os_specific_jsub to invoke gjawnts.pl. This script opens up a background
Windows process and calls gjajsub.pl which actually constructs the command to run the job
based on sctban_process_type. Output from the execution is saved into temporary files which
are assembled into a single file after the job is run. These files are put in the directory specified by
banner_jobsub_home. The naming convention is:

jobsub_home_sid_user_processname_oneupno

Batch Java scripts

The Java based Banner job submission processes need to use scripts to run. There is a certain
setup that needs to be done within the scripts for the Java code to run. These scripts are shipped
with setup that works for most clients.

However, changes to various application scripts were required for the process to run on a specific
environment such as 64-bit. These changes were required for each and every one of the scripts,
one per object/JAVA process. Whenever a new release was installed and these scripts are
redelivered, the clients have to make these changes manually.

These modifications have been centralized to a General owned script instead of product or object
level scripts. A new script has been created that enables the setting of Java environment variables
for use for batch process. These scripts enable clients to define their specific environment in one
script that will then be called by multiple batch processing scripts. This eliminates the need to
update every Java based script after ever install.

The following setups have been centralized:

• Oracle connection string - This is used by the JAVA process to make connection to the Oracle
database.

• UNIX ONLY - Path to where the Java Virtual Machine (JVM) is located. Sets the
LD_LIBRARY_PATH which is need by UNIX to run the JVM.

• Class path to where the connection libraries are located. Each version of the JVM uses a
different set of libraries to make connection to Oracle database. This communicates to the JVM
where these libraries can be found.

The following new scripts have been delivered for each of the various environments:

• UNIX - banjavaenv.shl
• Windows - banjavaenv.pm

©2018 Ellucian. Confidential & Proprietary 177

Reports and Processes

• VMS - banjavaenv.com

These scripts are located at <BANNER_HOME>/general/misc for UNIX/LINUX/NT and GEN$COM
for VMS.

Job Submission processing

The Job Submission Profile Maintenance Form (GJAJPRF) is used to maintain Operating System
specific information for your user ID. The base table for the form is the Personal Preference Table
(GURUPRF).

The Operating System is obtained from the OPERATING_SYSTEM property of the Oracle Forms
built-in command GET_APPLICATION_PROPERTY. All entries shown on this form have an internal
identification of JOBSUB, contained in the GURUPRF_GROUP column. The entries on the form
identify in which sub process this transaction will be used. The Value has several meanings based
on the value of the JOBSUB Component.

There are currently three JOBSUB components that can be manipulated using this form:
DEFAULT_PRINTER, LOCAL_DIRECTORY, and GURJOBS_DIRECTORY. These three details will be
stored with other personal user preferences on GURUPRF.

The DEFAULT_PRINTER and LOCAL_DIRECTORY are created automatically when you print and
save (respectively) from the Job Submission Review Output Form (GJIREVO).

The LOCAL_DIRECTORY can be any directory name that you can write to from your PC.

TECHNICAL NOTE: The GURJOBS program provides two mechanisms to specify the location of
output files generated from batch jobs. One technique involves looking up the username; the other
allows for the specification of a directory name to be passed to GURJOBS.

Looking up the user

For UNIX, this is done be reading the /etc/passwd file. If the userid is found in the file, the literal
jobsub is appended to this directory, and, if the directory exists and is able to be written to, this
directory is substituted for the HOME environment variable before the HOST command is executed. If
the directory does not exist, or it can not be written to, the current HOME directory is used when the
job is run.

About this task

For OpenVMS, Banner looks up the user in the sysuaf.lis file. This file is generated by running the
authorize facility:

Procedure

1. Logon as the user SYSTEM
2. Change to the SYS$SYSTEM directory by entering:

SET DEF SYS$SYSTEM

This should be the location of the sysuaf.dat file.
3. Run the authorize utility by entering:

©2018 Ellucian. Confidential & Proprietary 178

Reports and Processes

RUN AUTHORIZE

The command prompt will change to UAF>
4. Generate the sysuaf.lis file by entering the word LIST.UAF> LIST
5. To exit the authorize utility enter the word EXIT.UAF> EXIT

Results

The sysuaf.lis file will contain information about all logons for the machine. A sample follows.

Owner Username UIC Account Privs Pri Directory

Banner7 BANNER7 [522,0] BANNER All 4 $DISK1:
[BAN71_
ROOT]

When GURJOBS looks up a user, it opens this file, so it must be copied to a directory that can be
accessed by the GURJOBS program while it's running. Usually the sys$login directory will suffice.
Also make sure the privileges on the sysauf.lis file are changed if needed so it can be opened by the
userid used to submit GURJOBS.

Alternatively, you could change GURJOBS so that the location of the sysaf.lis file was fully-qualified.

If the userid is found, a temporary .com file is built and a set def to this directory is written to the file,
followed by the HOST command. If the directory is not found, the HOST command is issued directly.

Note: Your printer destination is controlled by your host login.

The DEFAULT_PRINTER must first be established on the GTVPRNT Form as a valid printer code.

Pressing the Insert Record key will create the GURJOBS_DIRECTORY row. This preference is used
to specify the name of a directory where output from Pro*C jobs will be placed when the job is run
from the Process Submission Control Form (GJAPCTL).

Specifying a home directory

The GJAJPRF form may be used to specify the location of a home directory to be used when batch
jobs are run. The GURJOBS_DIRECTORY preference indicates this, and is stored in the database
table GURUPRF.

There are several ways to specify a value:

• If the record does not exist, select the create record key. The form will create a
GURJOBS_DIRECTORY preference and attempt to find a home by sending a request to
GURJOBS to lookup the username as described above. If found, a directory name is returned.

• You may also enter the name of a directory. (For example, a file system that gets exported and
mounted to a PC.) This will then be sent to GURJOBS and an attempt will be made to create a
test file in this location. If successful, the name will be accepted. If not, an error message will be
issued.

©2018 Ellucian. Confidential & Proprietary 179

Reports and Processes

• You can also enter the literal LOOKUP, which will send a request to GURJOBS to lookup the user
as described above.

• You can enter the literal DATABASE. This option is valid for Pro*C programs and General COBOL
programs, and will cause the output to be placed in the database. It can subsequently be
reviewed on the GJIREVO form.

Note: The Insert Output Program (GURINSO) is a Pro*C program that is used to insert the
output into the database if the literal DATABASE had been entered in the Printer field of the
Process Submission Control Form (GJAPCTL). The gjajobs.shl/.com file invokes execution
of the program. If the program runs through the invocation of a command procedure, such as
GLBDATA, the command procedure will invoke GURINSO.

The Saved Output Review Form (GJIREVO) provides the ability to save the output as a file in
a directory and the ability to print the output if a network printer is available to the user. When a
request to print the output is made, the output is first saved to a local file and then printed by issuing
a copy command to the printer specified on the GTVPRNT form. You can also purge the output from
the database using this form.

Note: No attempt is made to delete the file from the LOCAL_DIRECTORY if a save or print operation
was performed.

Using Job Submission

Before attempting to print any data with the Saved Output Review Form, check that a printer has
been set up on the Printer Validation Form (GTVPRNT).

To produce the output, run a job in Job Submission as usual but be sure to put the word DATABASE
in the Printer field of the Process Submission Control Form (GJAPCTL).

Note: If you run multiple jobs with the same name, the system should not overwrite the existing
output because Job Submission incorporates the job’s one-up number as part of the generated file
name. If you are running jobs of some other type that do not use the one-up number as part of the
file name, you may overwrite an existing file.

To view and print the output you created, access the Saved Output Review Form (GJIREVO).

Enter a job name in the Job Name field or press the Job Name Button for a list of the jobs that were
run under your user ID that have not been purged from the database. You can double-click to select
the desired output.

Your output will immediately appear in the Saved Output block of the form for review. At this point
you can select the Save and Print button to save your output to your local directory, and print a
copy of the output to the printer you specify.

Select the Save to File button to save your output to the your local directory. Select the Delete
Output button to remove the selected file from the database.

Note: No attempt will be made to delete the file from your local directory after you have saved it.
Local directory maintenance of files is up to the individual site using this procedure.

©2018 Ellucian. Confidential & Proprietary 180

Reports and Processes

GURJOBS

GURJOBS is a PRO*C program created to handle the passing of jobs on a system network. It
receives messages sent by the PIPEIT trigger in the GUQINTF form, on a ORACLE PIPE named
GURJOBS.

When it receives a message, it must unpack it to determine what course of action to take. This is
indicated by the first message, which is the request type.

However, if the Advanced Queuing alternate communication mechanism has been implemented
(an alternative to DBMS_PIPE), GURJOBS instead listens and dequeues messages from queue
GURJOBS_Q. These messages are sent (or enqueued) by the AQIT pl/sql unit in the GUQINTF
form. After dequeuing the message, GURJOBS inspects message fragment MF_01 (see object type
g_msg_fragments) which is the request type.

Currently, GURJOBS is designed to process three types of requests:

1. HOST requests - usually those originating from the GJAPCTL form. These jobs are submitted
into the background (where available) and control is returned immediately to GUQINTF.

2. WAIT requests - typically initiated from an application form. GLRVRBL is an example of a
WAIT type. GURJOBS waits for the request to be fulfilled (if it can) before sending a response
back.

3. EXIT requests - terminate GURJOBS. The exit command is sent by signing on to SQL*Plus
and starting the gurstop.sql file contained in the general/plus subdirectory.

Processing with DBMS_PIPE

If using the DBMS_PIPE communication mechanism, processing proceeds as follows.

The second message unpacked is the HOST command built by the GUQINTF form.

The third message names a return pipe. The name of the return pipe is generated by executing
the DBMS_PIPE.UNIQUE_SESSION_NAME function which returns an unique name based on the
connection to the database, much like USERENV(‘SESSIONID’).

The fourth message is optional and will only be present if a directory name has been established
on the GJAJPRF form. If a directory name was not provided, GURJOBS will attempt to look it up by
extracting the username from the command.

GURJOBS takes the unpacked message and issues the “system” function passing the host
command as its argument.

system(command_string);

It then packs a message saying that the request is being processed and sends it back to the
PIPEIT trigger. This message is relayed back to GJAPCTL, which displays it on the status line of
the form. These messages are not usually displayed by application because they typically use the
GJBRSLT table to indicate the status of the run.

When the system function is executed it will either execute the GJAJOBS file or the name of the file
specified in the command name field on the GJAJOBS form.

©2018 Ellucian. Confidential & Proprietary 181

Reports and Processes

Processing with DBMS_PIPE

If using the Advanced Queuing alternate communication mechanism (an alternative to DBMS_PIPE),
processing proceeds as follows.

Message fragment MF_02 holds the HOST command built by the GUQINTF form. This message
fragment carries sensitive data.

Note: GURJOBS_Q queue messages may contain sensitive data needed to run jobs. These
messages are persisted and therefore, the sensitive portion of these messages (MF_02) is
encrypted. The GURJOBS process decrypts the sensitive portion. Database access to the
decryption package (GSPCRPU) can be restricted but must, at minimum, be accessible to the
GURJOBS process (the user running the GURJOBS process).

Message fragment MF_03 is optional and will only carry a value if a directory name has been
established on the GJAJPRF form. If a directory name was not provided, GURJOBS will attempt to
look it up by extracting the username from the command.

Message fragment MF_MISC_01 holds a unique token value. This value is established in PL/SQL
unit AQIT in the GUQINTF form. This form passes the unique token value, through the queue
GURJOBS_Q, to the GURJOBS process. The form then listens (a conditional dequeue operation) for
this unique token value on queue GURJOBS_RTN_Q.

GURJOBS takes the dequeued message and issues the “system” function passing the host
command as its argument system (command_string); it then enqueues a message on return
queue GURJOBS_RTN_Q. This queue message holds the unique token value that was previously
obtained off of the GURJOBS_Q queue message. The return message indicates that the request
is being processed and sends this back to the AQIT pl/sql unit. This message is relayed back
to GJAPCTL, which displays it on the status line of the form. These messages are not usually
displayed by application because they typically use the GJBRSLT table to indicate the status of the
run.

When the system function is executed it will either execute the GJAJOBS file or the name of the file
specified in the command name field on the GJAJOBS form.

IDLEWAIT timeout configuration modification for GURJOBS.pc

The maximum wait time waiting for a message on either the GURJOBS pipe or the GURJOBS_Q
queue was 345,600 seconds or four days (86,400 seconds per day). The GURJOBS process
stopped if it was idle for four days. After the 8.3 release, the gurjobs.pc process has been
modified such that the wait time (for sitting idle) is no longer hard coded at 345,600 seconds (4
days). The wait time is externally configurable now.

This modification reads IDLEWAIT timeout from gtvsdax and will only time out if it is idle
for that number of seconds. The max_wait_receive, which was previously hard valued
to 345,600 seconds (4 days), is now obtained from the gtvsdax row using the function
get_GtvsdaxWaitSeconds(). This gtvsdax row is delivered with a value of 345,600 seconds and
a value of 86,400,000 seconds (1000 days) is the maximum.

©2018 Ellucian. Confidential & Proprietary 182

Reports and Processes

Note: Oracle Development has confirmed (November-2010) that 21,474,836 is the upper limit if a
number is specified for wait time during a dequeue operation. Therefore, it is recommended that, if
you are using the GURJOBS_Q queue aspects of GURJOBS.pc processing and are looking to use
a larger IDLEWAIT timeout value than that which is delivered (345,600 seconds or 4 days), then you
should use a value that is less than or equal to 21,474,836 seconds (approximately 248.5 days).

Manage Job Submission on Windows

This section provides information on running the job submission GURJOBS.PC process on Windows.

Starting Job Submission for your default database

To start the Job Submission Application Server (GURJOBS) program you will need to perform the
following steps.

Prerequisites

This assumes that you have your ORACLE_SID entry in the Oracle Registry set to your initial
Banner install database, usually SEED.

About this task

This also assumes that your System Environment variable BANENV is set to REG. REG means that
the initially installed Banner key will be used from the registry. To view and change the BANENV
variable, select Control Panel > System>Environment.

To start GURJOBS on Windows, do the following:

Procedure

1. Check the value of ORACLE_SID in the Oracle Registry.
2. Check the value of the System Environment variable BANENV.
3. Position in the \general\misc directory under Banner’s Home directory.
4. Start the Perl script gurjwnt.pl. This will start job submission in the background. Note the space

between the userid and the password.
perl gurjwnt.pl <uid> <passwd>

5. Bring up the NT task manager and verify that gurjobs.exe is running.

To keep job submission running on NT you must leave the administrator account logged in on
the console. The console can be locked so that a password is needed to access it, but it is still
logged in.

In the future, instructions will be published for how to run job submission as a service. This, will
require some files from the NT resource kit.

©2018 Ellucian. Confidential & Proprietary 183

Reports and Processes

Starting Job Submission for multiple databases

The below example assumes you will have a SEED and TRNG instance - case does NOT matter.

Procedure

1. Change the BANENV setting to ENV (for ENVironment) in the System Environment. Select
Control Panel>System>Environment to change this value. Changing BANENV to be ENV will
allow Banner to override a registry entry with a value from the environment.

2. Create a LOCAL directory (optional - this could all be done in the Banner directories).
Copy the general\misc\gurjwnt.pl script into the LOCAL directory to a name of
gurjwnt_seed.pl.

3. Edit the gurjwnt_seed.pl script and add a line following the line &sctban_os_specific_env;
to set the ORACLE_SID for this instance as follows:
$ENV{“ORACLE_SID”} = “SEED”;

4. Save and exit the script.
5. Run this script to start GURJOBS against the SEED database. Substitute your actual path for

c:\local\.
perl -S c:\local\gurjwnt_seed.pl <uid> <pswd>

Do the same tasks for GURJWNT_TRNG.PL, substituting TRNG for SEED.

Manage Job Submission on VMS

This section provides information on running the job submission GURJOBS.PC process on VMS.

Starting Job Submission for your default database

To start GURJOBS on VMS, perform the following steps.

Procedure

1. Create a new VMS account for every ORACLE_SID.

Note: The GURJOBS owner is not an interactive account. The GURJOBS owner login account
should not have any prompts while logging in to the GURJOBS owner VMS account.

2. Create LOGIN.COM, GURJOBS.COM, and START_GURJOBS.COM files.
3. Run START_GURJOBS.com to start the GURJOBS in background.

For example, VMS userid is JOBSUB8X and has a SYS$LOGIN directory of A20:
[SCT.JOBSUB.BAN8].

Note: The text included in this example can be used in new files created in the JOBSUB8X SYS
$LOGIN directory.

©2018 Ellucian. Confidential & Proprietary 184

Reports and Processes

LOGIN.com

$ @A20:[oracle.92]orauser.com BAN8
$ @A20:[sct.ban8.admin]banlogic.com

GURJOBS.COM

$!
$! GURJOBS - Command procedure to run job submission
$!
$! AUDIT TRAIL: 2.1.5 INIT DATE
$! 1. New command procedure. TM 02/06/95
$! AUDIT TRAIL END
$!
$ ON CONTROL THEN GOTO FINISH
$!
$ P1 := 'P1 ' ''P2 ' ''P3 ' ''P4 ' ''P5 ' ''P6 ' ''P7 ' ''P8'
$!
$! Define logicals use by program.
$!
$! ROOAUTO.LOG - Log file containing screen output (sys$output)
$! generated by program.
$!
$! DEFINE/USER/NOLOG SYS$OUTPUT SYS$LOGIN:GURJOBS.LOG
$!
$! Execute the cobol program.
$!
$ RUN GEN$EXE:GURJOBS
<user_ID>
<password>
$!
$ FINISH:
$ EXIT

START_GURJOBS.COM

$submit/user=jobsub8x/que=axp1$banner a20:[sct.jobsub.ban8]gurjobs.com/
log=start_gurjobs.log/noprint

Starting Job Submission for multiple databases

Control the location of JOBSUB output with the JOBSUB_ACCOUNT logical SYS$LOGIN.

©2018 Ellucian. Confidential & Proprietary 185

Reports and Processes

 "SYS$LOGIN" = "A20:[SCT.JOBSUB.BAN8]"

SID BANNER_HOME JOBSUB_ACCOUNT JOBSUB_HOME (SYS
$LOGIN)

BAN7 a20:[sct.ban7] jobsub7x a20:[sct.jobsub.ban7]

BAN8 a20:[sct.ban8] jobsub8x a20:[sct.jobsub.ban8]

PROD a20:[sct.prod] jobsub_prod a20:[sct.jobsub.prod]

TEST a20:[sct.test] jobsub_test a20:[sct.jobsub.test]

Every VMS account should have a separate LOGIN.COM calling that database specific
ORAUSER.COM and BANLOGIC.COM.

Manage Job Submission on UNIX

This section provides information on running the job submission GURJOBS.PC process on Unix.

Starting Job Submission for your default database

Create a new account for every ORACLE_SID to run GURJOBS or SFRPIPE processes.

Note: The gurjobs owner is not an interactive account. Ensure no prompts for database SID are
displayed while logging into the Job Sub Unix account.

For example, Unix ID banjobs has a $HOME directory of /u01/banner/banjobs.

Note: The text included in this example can be used in new files created in the BANJOBS $HOME
directory.

Listing All BANJOBS .Profile

#.profile
#An example listing of the banjobs' .profile
export ORACLE_BASE=/u02/oracle
export ORA_NLS10=$ORACLE_HOME/nls/data
export TNS_ADMIN=$ORACLE_BASE/local/network
export LD_LIBRARY_PATH=/u01/cobol/lib
SID BANNER_HOME JOBSUB_ACCOUNT JOBSUB_HOME (SYS$LOGIN)
BAN7 a20:[sct.ban7] jobsub7x a20:[sct.jobsub.ban7]
BAN8 a20:[sct.ban8] jobsub8x a20:[sct.jobsub.ban8]
PROD a20:[sct.prod] jobsub_prod a20:[sct.jobsub.prod]
TEST a20:[sct.test] jobsub_test a20:[sct.jobsub.test]
Banner General Technical Reference Manual | Reports and Processes 178
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib
export JDK=$ORACLE_HOME/jdk/jre/lib/i386 #(operating system specific)
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JDK/native_threads #(operating
system specific)

©2018 Ellucian. Confidential & Proprietary 186

Reports and Processes

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JDK/server:$JDK #(operating
system specific)
export TWO_TASK=unix1_prod
export BANNER_HOME=/u01/bannner
export DATA_HOME=$BANNER_HOME/dataload
export COBPREF='perl /u01/banner/links/banfjsv.pl ' #(specific to
 Fujitsu
NetCOBOL)
export EXE_HOME=$BANNER_HOME/general/exe
export BANNER_LINKS=$BANNER_HOME/links
export ORACLE_PATH=.:$BANNER_LINKS
export PATH=$PATH:$EXE_HOME:$BANNER_LINKS

Starting GURJOBS or SFRPIPE from a CRON

:
banjobs_driver.shl
This script may be run as banjobs from a cron to start gurjobs/
sfrpipe.
You may need to give banjobs permissions to run cron jobs (/etc/
cron.d/
cron.allow).
This script may also be run from the Unix command prompt.
LOGFILE1=/u01/banner/banjobs/gurjobs.log;export LOGFILE1
LOGFILE2=/u01/banner/banjobs/sfrpipe.log;export LOGFILE2
/u01/banner/banjobs/gurjobs.shl >>${LOGFILE1} 2>&1 &
/u01/banner/banjobs/sfrpipe.shl >>${LOGFILE2} 2>&1 &

Starting GURJOBS by calling BANJOBS_DRIVER.SHL

:
gurjobs.shl
This script is called by banjobs_driver.shl to start gurjobs.
(gurjobs -o jobs1 >>/u01/banner/banjobs/gurjobs.log 2>&1) << endofit
saisusr
u_pick_it
endofit

Starting SFRPIPES by calling BANJOBS_DRIVER.SHL

:
sfrpipe.shl
This script is called by banjobs_driver.shl to start sfrpipes.
cd /u01/banner/banjobs
(sfrpini >>/u01/banner/banjobs/sfrpipi.log 2>&1) << endofit
saisusr
u_pick_it
endofit

©2018 Ellucian. Confidential & Proprietary 187

Reports and Processes

Starting BANJOBS_DRIVER.SHL from the UNIX prompt or from a CRON

The banjobs_driver.shl script can be started at the Unix prompt or from a cron. Before starting,
create empty log file.

su - banjobs
touch gurjobs.log
touch sfrpipe.log
su
cd $BANNER_HOME/jobsub
./banjobs_driver.shl

Determining if GURJOBS or SFRPIPE is running in background

To determine if gurjobs/sfrpipe is running in the background, execute the following:

ps -efl | grep -i gurjobs
ps -efl | grep -i sfrpipe

Stoping GURJOBS using the Banner Baseline script GURSTOP.SQL

To stop gurjobs, use the Banner baseline script gurstop.sql, by executing the following:

sqlplus saisusr/u_pick_it @$BANNER_LINKS/gurstop.sql

Starting Job Submission for multiple databases

If there are five databases then have five separate $BANNER_HOME source trees and also have five
separate UNIX JOBSUB accounts so that each account starts a copy of GURJOBS. This ensures
everything is separate for GURJOBS and upgrades.

SID BANNER_HOME JOBSUB_ACCOUNT JOBSUB_HOME (SYS
$LOGIN)

PROD /u01/prod jobsub_prod /u01/prod/jobsub

PPRD /u02/pprd jobsub_pprd /u02/pprd/jobsub

TRNG /u03/trng jobsub_trng /u03/trng/jobsub

TEST /u04/test jobsub_test /u04/test/jobsub

SEED /u05/seed jobsub_seed /u05/seed/jobsub

Now you have five UNIX JOBSUB accounts defined above and each would have a separate default
profile (.profile or .login) and home directory.

After creating the profiles, start GURJOBS using these accounts. It defaults the environmental
variables to that of ORACLE_SID (banenv, oraenv). This keeps all the environmental variables
separate.

©2018 Ellucian. Confidential & Proprietary 188

Reports and Processes

Manage Job Submission on non-database server

This section provides information on running the job submission GURJOBS.PC process on another
Unix server besides the Unix database server for Banner 7x and 8x environments.

Following are required for submitting a job on a non-database server:

• C compiler
• Cobol compiler
• Oracle Net (for example SQL*Net)
• Oracle Pro*C
• Oracle Pro*COBOL

Note: For details on Oracle licensing contact your vendor. If you have a license for Oracle that
was not issued by Oracle, contact your Account Manager.

For the Banner Pro*C programs (.pc) and Pro*COBOL programs (.pco) to be compiled on a non-
database server, they should be copied to the non-database server.

The Banner .shl scripts should also reside in the links directory.

Typical directory structure

A typical directory structure for the Banner Home on Unix on the non-database server may look like
the following.

cd $BANNER_HOME
ls -l
drwxr-xr-x 2 banjobs dba 11776 Jan 7 16:00 exe/
drwxr-xr-x 2 banjobs dba 512 Jan 2 15:24 jobsub/
drwxr-xr-x 2 banjobs dba 512 Jan 2 15:24 links/

drwxr-xr-x 2 banjobs dba 17408 Jan 3 12:47 general/c/
drwxr-xr-x 4 banjobs dba 13312 Jan 7 15:09 general/cob/
drwxr-xr-x 4 banjobs dba 13312 Jan 7 15:09 general/java/

Note: Additional product directories will exist for other installed products.

The Job Submission Unix ID in the example above is called BANJOBS. BANJOBS $HOME directory
is jobsub. Files similar to the scripts described below reside in the jobsub directory.

Note: The non-database job sub server requires ICU to be installed to perform the c compilations.

©2018 Ellucian. Confidential & Proprietary 189

Reports and Processes

Executing Banner Pro*C or Pro*Cobol programs

To execute Banner Pro*C or Pro*Cobol programs, you should execute the Banner GJAPCTL form
and the executables from the non-database server. The output files will be created in the /u01/
ban_jobsub/jobsub directory.

View Job Submission output

The output of a job may be viewed on the Saved Output Review Form (GJIREVO). When you
select Options>Show Document (Save and Print File), the Job Submission Output is displayed in a
browser window. The output can then be saved to a local file or printed.

About this task

You can set up Banner to support this feature.

Procedure

1. Create an Oracle Application Server Listener and PL/SQL cartridge, or use an existing one. An
example URL might be:
http:/yourserver.com:portnumber/prodban7/

2. In Banner, go to the General User Preferences Maintenance Form (GUAUPRF). Select the
Directory Options button.

3. Scroll down until you find the Description that contains Enter the name of your Web
Output URL.
The Default Value field contains http:/yourserver.com/directory.

4. Enter your directory name in User Value.
5. Enter the URL you created in User Value and save your changes, for example:

http:/yourserver.com:portnumber/prodban7/

Note: If you want to change this value for all users, you must log onto Banner with the userid
BASELINE, and then make the changes on GUAUPRF.

6. Logon to Banner in a web forms environment, and go to GJIREVO. The output of the job
appears in a separate browser window. You can save the output to a file or send it to a printer
by selecting the appropriate item from the Options menu.

Manage the printing of saved output using the Banner Print App

Use the Banner General Self-Service App and the Banner Print App to print the pending print output
for printers defined on GJALCPR, and whose saved output is in GJAJLIS.

Procedure

1. Download the Banner Print App from the Software Download Center.

©2018 Ellucian. Confidential & Proprietary 190

http:/yourserver.com:portnumber/prodban7/
http:/yourserver.com/directory
http:/yourserver.com:portnumber/prodban7/

Reports and Processes

The Banner Print App is not deployed using ESM. The Banner General Self-Service App
version 9.2 is installed using ESM.

2. After you download the Banner Print App war file, expand the war file using any un-compression
tool.

3. Extract the README.md and the BannerPrintApp_configuration.example files.
4. Follow the instructions for setting up the configuration and deploying the war file to an applicable

server.

The Banner Print App cycles through sleep and wake mode in which it sends HTTP requests to
the Banner General Self-Service App for pending print jobs. The Banner General Self-Service
App responds with a list of pending print jobs along with the printer. The Banner Print App gets
each output file and prints to the designated printer. After the print command is executed, the
Banner Print App performs a put request to Banner General Self-Service App to update the print
date on the pending print job.

To implement the pending print output, the operating system must be a non-Windows operating
system. The job must be enabled for saved output on GJAJBMO and printers must be defined
on GJALCPR as being part of the pending print process. Finally, the user must submit the job
with the GJALCPR printer and with the GJAJLIS saved output option.

Process PL/SQL packages with JOBSUB

A C process, gsubsql.pc has been developed as a wrapper to enable the submission of PL/SQL
package jobs through jobsub. This will use standard Banner security to ensure that the users is
authorized to submit the job. The only requirement will be that your job will require its own .shl
script, but other than that you will be able to submit SQL procedures through job submission.

About this task

To use this script, perform the following steps:

Procedure

1. On GJAJOBS, create an entry with PROCESS equal to the name of your PL/SQL package, a
type of 'Procedure', and appropriate description and title

2. On GSASECR, the OBJECTS tab, create an entry with the name of your PL/SQL package,
appropriate version number, and role (typically BAN_DEFAULT_M)

3. On GSASECR, assign the object just created to a user directly or thru a class (after adding the
object to the class). You can even add the object to a security group on GSADSEC if desired.

4. Create a script with the same name as the name of your PL/SQL package
5. Create a PL/SQL package with a procedure to perform the tasks needed. The

package.procedure will be called with one parameter, the one_up_seqno.

The 'process' must match the name of a PL/SQL package that contains the PL/SQL procedure
that will be executed.

The package.procedure will be called with one parameter, the one_up_seqno. The script
created will need a statement similar to the following:

©2018 Ellucian. Confidential & Proprietary 191

Reports and Processes

gsubsql -n $ONE_UP -j $PROG -p name_of_PL/SQL_procedure $UIPW

Example

An example of this script being used is general/misc/gorsrin.shl and is included below.

:
#!/bin/sh
gorsrin.shl - script to run the batch population selection program
. . .
#
LOGFILE=$LOG; export LOGFILE
DATE=`date "+%Y%m%d_%HH%MM"`; export DATE
PROG=gorsrin; export PROG
Send all standard output and standard error to the logfile.
exec > $LOGFILE 2>&1
echo "Starting Shell Script for" $PROG
Execute Proxy Access Common Matching People Load SQL script.
gsubsql -n <one up number> -j <job name and name of package where
 procedure is located>
-p <name of procedure to execute> <user id/password>
gsubsql will validate access and set roles based upon access to $PROG
 (which is the same as the gjapctl and script job name [gorsrin])
Then will call the procedure passing the one-up number as the only
 parameter. It is up to the procedure to
get the job parms from gjbprun as needed.
gsubsql -n $ONE_UP -j $PROG -p p_gen_proxyaccess_com_match $UIPW
SQLERROR=$?
echo "Ending Shell Script. Status=" $SQLERROR
echo " "
if [$SQLERROR -ne 0] ; then
 echo "### +++ SQLPLUS failed: " $SQLERROR
 echo "Job terminated"
fi
Load all files to database, if requested
#
if ["$PRNT" = "DATABASE"] ; then
 case $PSWD in
 /) UIPW=$PSWD ;;
 *) UIPW=$BANUID/$PSWD ;;
 esac
 echo "Loading files into the database for viewing on GJIREVO"
#
The following find command will find all files with a name containing
 the process and one_up_seq except those with a file type
of ".in" or ".shl" that were modified in the last 24 hours. It will
 list the name of the file, and then load it into the database
for viewing on GJIREVO.
#
 find ${H}/${PROC}_$ONE_UP* ! \(-name "*.in" -o -name "*.shl" \) -
mtime -1 -exec ls -alt {} \; -exec gurinso -n $ONE_UP -l {} -j $PROG -w
 $BANUID $UIPW \;
fi
if [$SQLERROR -ne 0] ; then

©2018 Ellucian. Confidential & Proprietary 192

Reports and Processes

 exit $SQLERROR
fi
exit

Create a job to run a PL/SQL package.procedure thru jobssub

To create a job to run a PL/SQL package.procedure through job submission, perform the following
steps.

Procedure

1. Define the PL/SQL test procedure as follows:

sqlplus system/manager
grant dba to general;
alter user general default role dba;
sqlplus general/u_pick_it
drop package body testsql;
drop package testsql;
DROP PUBLIC SYNONYM testsql;
CREATE OR REPLACE PACKAGE testsql AS
PROCEDURE testjob (one_up_no IN VARCHAR2);

END testsql;
/
SHOW ERRORS;
DROP PUBLIC SYNONYM testsql;
CREATE PUBLIC SYNONYM testsql FOR testsql;
CREATE OR REPLACE PACKAGE BODY testsql AS
PROCEDURE testjob (one_up_no IN VARCHAR2)
 IS
 cmd1 VARCHAR2(250);
 cmd2 VARCHAR2(250);
 result VARCHAR2(250);
 BEGIN
 cmd1 := 'SELECT GJBPRUN_JOB FROM GJBPRUN WHERE
 GJBPRUN_NUMBER=''99'' AND GJBPRUN_ONE_UP_NO = '||one_up_no;
 cmd2 := 'UPDATE GJBPRUN SET GJBPRUN_LABEL = ''GSUBSQL COMPLETE''
 WHERE GJBPRUN_NUMBER=''99'' AND GJBPRUN_ONE_UP_NO = '||one_up_no;
--
 EXECUTE IMMEDIATE cmd1 INTO result;
 DBMS_OUTPUT.PUT_LINE('RESULT = '||result);
 EXECUTE IMMEDIATE cmd2;
--
 END testjob;
END testsql;
/
SHOW ERRORS;
sqlplus system/manager
revoke dba from general;

©2018 Ellucian. Confidential & Proprietary 193

Reports and Processes

2. Test executing the procedure from SQLPLUS to confirm it is working as follows:

set serveroutput on
XECUTE testsql.testjob(1716);

The expected result is:

RESULT = TESTSQL
PL/SQL procedure successfully completed.

To continue the test, execute the following:

select GJBPRUN_LABEL from GJBPRUN WHERE GJBPRUN_NUMBER='99' AND
 GJBPRUN_ONE_UP_NO = 1716;

The expected result is:

GSUBSQL COMPLETE

3. Create the OS file testsql.shl in UNIX or testsql.pl in Windows in $BANNER_HOME/
general/misc.
a) In UNIX, the testsql.shl should contain the following:

:
#!/bin/sh
testsql.shl
LOGFILE=$LOG; export LOGFILE
DATE=`date "+%Y%m%d_%HH%MM"`; export DATE
PROG=testsql; export PROG
exec > $LOGFILE 2>&1
echo "Starting Shell Script for" $PROG
gsubsql -n $ONE_UP -j $PROG -p testjob $UIPW
SQLERROR=$?
echo "Ending Shell Script. Status=" $SQLERROR
exit

b) In Windows, the testsql.pl should contain the following:

testsql.pl
use sctban;
&sctban_determine_os;
&sctban_os_specific_env;
&sctban_jsub_env;
$a1 = $ARGV[0];
$a2 = $ARGV[1];
$a3 = $ARGV[2];
$a4 = $ARGV[3];
$a5 = $ARGV[4];
$banner_exe = $ENV{"BANNER_EXE"};

©2018 Ellucian. Confidential & Proprietary 194

Reports and Processes

open (CPROCESS, "|${banner_exe}${sctban_dirsep}gsubsql -n ${a3} -
j ${a4} -
p testjob ${sctban_user_pass} >${sctban_file_name}.stdout
2>${sctban_file_name}.stderr");
close (CPROCESS);
&sctban_rebuild_log;

4. Login to Banner and setup TESTSQL process, by defining the job on GJAJOBS as follows:

Process = TESTSQL
Title = Testing PL/SQL via GSUBSQL
System = G
Type = Procedure

On the Objects tab of GSASECR, define TESTSQL as follows:

TESTSQL 8.5 G BAN_DEFAULT_M PUBLIC

On the Users tab of GSASECR, assign TESTSQL to userid for testing.
5. Login as userid and run TESTSQL from GJAPCTL. It should create a log file named

rocoram2_ban8_saisusr_testsql_1717.log that contains the following:

Starting gsubsql (Release 8.5)
Banner General Technical Reference Manual | Reports and Processes
 186
Connected.
Running
select GJBPRUN_LABEL from GJBPRUN WHERE GJBPRUN_NUMBER='99' AND
GJBPRUN_ONE_UP_NO = 1719;

When complete and the PL/SQL procedure ran correctly through JOBSUB and updated the
database, the following message will display:

GSUBSQL COMPLETE

Data extract process

You can extract data from a Banner form to use in a spreadsheet. For instructions and a list of
supported forms, see “Extracting Banner Data to a Spreadsheet” in Chapter 3 of the Banner Getting
Started Guide.

About this task

You can use the Object Maintenance Form (GUAOBJS) to enable the extract feature on any form
where the extract has been tested.

To set up Banner to support this feature, you must perform the following steps:

©2018 Ellucian. Confidential & Proprietary 195

Reports and Processes

Note: You may have already done these steps to establish support for processing with the Saved
Output Review Form (GJIREVO). If so, you do not need to repeat them.

Procedure

1. Create an Oracle Application Server Listener and PL/SQL cartridge, or use an existing one. An
example URL might be:
http:/yourserver.com:portnumber/prodban7/

2. In Banner, go to the General User Preferences Maintenance Form (GUAUPRF). Select the
Directory Options button.

3. Scroll down until you find the Description that contains Enter the name of your Web
Output URL.

4. Enter the URL you created in User Value and save your changes.

Note: To use the URL you created for all users, you must be logged into Banner with the userid
BASELINE when you make your changes on GUAUPRF.

Any records that were created by a data extract are deleted when the user leaves Banner. If
a user’s data extracts result in a total of more than 500 records being selected, the following
message will display when the user exits: There may be a delay exiting caused by
the removal of data extracted during this session.

If a user has performed FGAGASB data extracts resulting in a total of more than 500 records
being selected, the message on the user’s exit will be There may be a delay exiting caused by
the removal of FGAGASB data extracted during this session.

Data extract tables

With Release 7.4, two tables were introduced specifically for storing data extract information.

The new tables are:

• Data Extract Collection Header Table (GUBOUTD)
• Data Extract Collection Detail Table (GUROUTD)

Before Release 7.4, data extract information was stored in Job Submission tables GUBOUTP and
GUROUTP. Sharing these tables with Job Submission had the potential to cause performance
problems, particularly during month-end, quarter-end, and year-end processing. Having separate
tables dedicated to data extract improves performance during busy processing times.

Note: Data extracted using the Banner Finance GASB Parameter Form (FGAGASB), or accessed
through the Saved Output Review Form (GJIREVO), are still stored in the GUBOUTP and
GUROUTP tables.

©2018 Ellucian. Confidential & Proprietary 196

http:/yourserver.com:portnumber/prodban7/

Reports and Processes

Purge data extract records with gdeloutd.sql

The gdeloutd.sql script is used to delete any GUBOUTD and GUROUTD records that are less than
the input date (in DD-MM-YYYY format) provided by the user.

Because the data stored in the new GUBOUTD and GUROUTD tables are temporary, and purged
during logout from Banner, a problematic exit from Banner may cause the data to remain in the
tables. In that case, you can use this script to manually remove the data.

Environment variable BAN_DATA_EXTRACT_PAD_COLUMNS

This optional environment variable is used in conjunction with the GOQRPLS routines GOQRPLS.G
$_DATA_EXTRACT and GOQRPLS.G$_WRITE_BLOCK.

• If the variable is set to Y (Yes)--The Data Extract logic in the G$_WRITE_BLOCK will pad the
columns with spaces, as it did before Release 7.4.

• If the variable is set to N (No)--The columns will not be padded with spaces. The padding is not
needed because the columns have “wrapper” of double quotes around them.

Note: If the variable does not exist, then Banner assumes a value of N.

©2018 Ellucian. Confidential & Proprietary 197

APIs

APIs
APIs

Application Programming Interfaces (APIs) are used to facilitate the integration of Banner with other
applications on campus and simplify code by encapsulating business logic in database packages.
An API is a central program that creates, updates, and deletes data. APIs also execute and validate
business rules before inserting or updating information.

Detailed documentation for APIs can be downloaded from the Customer Support Center. Select
“API Documentation” when browsing for product documentation. There is also an optional API/ERD
Index (api_erd_index_guide.zip) that provides a single starting point for HTML-based API
documentation and Entity Relationship Diagrams.

APIs used in Banner General

The following tables and forms use APIs to process data in Banner General. The form listed next
to the table in this chart is the representative source used to build the API validation and business
rules. The APIs replace the corresponding code in the Banner forms.

Most of the APIs support create, update, and delete signatures. Exceptions, such as queries, are
noted under Task Performed.

Table Form API Object Name API Entity
Name

Task Performed

GORFGBP GOAFGAC gb_bus_prof_rule BUSINESS
PROFILE
RULE

Assigns the
categories of
users and their
privileges to
each domain
and predicate
for a FGAC VBS
Group Rule.

GORFBPR GOAFBPR gb_businessprofile BUSINESS
PROFILE

Groups users
with similar
responsibilities
for FGAC VBS
processing.

GORFBPI GOAFBPI gb_busprofpii BUSINESS
PROFILE
PII

Groups users
with similar
responsibilities
for FGAC PII
processing.

GORCMDD GORCMDD gb_cm_data_
dictionary

COMMON
MATCHING

Maintains data
dictionary entries

©2018 Ellucian. Confidential & Proprietary 198

APIs

Table Form API Object Name API Entity
Name

Task Performed

DATA
DICTIONARY

for common
matching.

GORCMDH GORCMDH gb_cm_disp_hier COMMON
MATCHING
DISPLAY
HIERARCHY

Maintains
display hierarchy
information
for common
matching.

GORCMDO GORCMRL gb_cm_display_
options

COMMON
MATCHING
DISPLAY
OPTIONS

Maintains options
for how common
matching search
results will be
displayed.

GORCMSR GORCMRL gb_cm_rules COMMON
MATCHING
RULES

Maintains
common
matching rules.

GORCMSP GORCMRL gb_cm_source_
priority

COMMON
MATCHING
SOURCE
PRIORITY

Maintains
priority numbers
for common
matching source
codes.

GORCMSC GORCMSC gb_cm_source_rules COMMON
MATCHING
SOURCE
RULES

Maintains
source codes
for common
matching.

GORCMUP GORCMRL gb_cm_user_
procedure

COMMON
MATCHING
USER
PROCEDURE

Associates
packaged
procedures
to be used by
the common
matching
procedure.

GOBCMUS GORCMUS gb_cm_user_setup COMMON
MATCHING
USER SETUP

Maintains users
for common
matching.

GTVCURR GTVCURR gb_currency CURRENCY Maintains
currency codes.

GURCURR GUACURR gb_currency_rate CURRENCY
RATE

Maintains rates
for currency
conversion.

GORDMCL GORDMCL gb_displaycolumns DISPLAY
COLUMN

Maintains data
items (columns)
for Protection

©2018 Ellucian. Confidential & Proprietary 199

APIs

Table Form API Object Name API Entity
Name

Task Performed

of Sensitive
Information
security.

GORDMSK GORDMSK gb_displaymask DISPLAY
MASK
COLUMN
RULE

Maintains rules
for users and
items (columns)
for Protection
of Sensitive
Information
security.

GOBFDMN GORFDMN gb_domains DOMAIN Maintains
domains
for FGAC
processing.

GOBFDTP GORFDTP gb_domaintype DOMAIN
TYPE

Maintains domain
types for FGAC
processing.

GOREMAL GOAEMAL gb_email EMAIL Maintains e-mail
address records.

GORFGUS GOAFGAC gb_fgac_user_rule FGAC USER
RULE

Assigns users
and their
privileges to each
domain-predicate
combination for
a FGAC VBS
Group Rule.

GOBFEOB GORFEOB gb_fgacexcluded-
objects

FGAC
EXCLUDED
OBJECT

Maintains
objects excluded
from all FGAC
processing.

GOBFGAC GOAFGAC gb_group_rules GROUP RULE Maintains the
Active and
Effective Date
characteristics for
FGAC VBS group
rules.

GORIMMU GORIMMU gb_immunization IMMUNIZATIONMaintains
immunization
status
information.

GORIROL — gb_institution_ role INSTITUTION
ROLE

Calculates
institutional roles.

©2018 Ellucian. Confidential & Proprietary 200

APIs

Table Form API Object Name API Entity
Name

Task Performed

GORICCR GORICCR gb_integ_config INTEGRATION
CONFIGURATION

Maintains
integration
configuration
settings.

GORBLOB TGISTMT gb_large_object LARGE
OBJECT

Provides
centralized
storage for large
objects, including
graphics files and
PDFs.

GORNAME GORNAME gb_name_translate NAME
TRANSLATE

Maintains aliases
or nicknames
associated to
given names (No
update).

GORNPNM — gb_np_name_trans NP NAME
TRANS

Maintains aliases
or nicknames
associated with
non-person
names.

GORPRAC GOQCLIB gb_person_race PERSON
RACE

Maintains person
race data.

GORFDPI GORFDPI gb_pii_tables PII TABLE Maintains table
rules for FGAC
PII processing.

GORINTG GORINTG gb_partner_rule PARTNER
RULE

Maintains
integration
partner system
rules.

GOBANSR GOATPAD gb_pin_answer PIN ANSWER Stores answers to
security questions
and compares the
answers provided
by users during
the PIN reset
process.

GOBQSTN GOAQSTN gb_pin_question PIN
QUESTION

Stores and
retrieves security
questions used
in the PIN reset
process.

©2018 Ellucian. Confidential & Proprietary 201

APIs

Table Form API Object Name API Entity
Name

Task Performed

GORADID %IDEN forms gb_additional_ ident ADDITIONAL
IDENT

Stores and
retrieves
additional ID
information.

GORRACE GORRACE gb_race_ethnicity RACE
ETHNICITY

Maintains race
rule information.

GORSDDV GOADISC gb_sde_discrim_
value

DISCRIM
VALUE

Stores and
retrieves
discriminator
values for SDE
processing.

GOBSDDC GOADISC gb_sde_
discriminator

SDE
DISCRIMINATOR

Stores and
retrieves
discriminator
information for
SDE processing.

GORSDAM GOASDMD gb_sde_metadata SDE
METADATA

Stores and
retrieves
metadata for SDE
attributes.

GOBSDTB gb_sde_table SDE TABLE Stores and
retrieves
information on
Banner tables
that have been
extended with
supplemental
data through
SDE.

GOBTPAC GOATPAC gb_third_party_
access

THIRD
PARTY
ACCESS

Maintains cross-
references
between third
party system
user IDs and
Oracle user ID
(No delete).

GOBFPUD GOAFPUD gb_userdefault USER
DEFAULT

Defines a user's
home domain
for FGAC PII
processing.

GORFPII GOAFPII gb_userpiidomains USER PII
DOMAIN

Maintains
domains for each

©2018 Ellucian. Confidential & Proprietary 202

APIs

Table Form API Object Name API Entity
Name

Task Performed

user for FGAC PII
processing.

GORFPRD GORFDTP gb_vbs_predicate VBS
PREDICATE

Maintains
predicate
statement
(WHERE clause)
for FGAC VBS
processing.

GORFDPL GORFDPL gb_vbs_tables VBS TABLE Maintains tables
associated with
each domain
for FGAC VBS
processing.

GORVISA GOAINTL gb_visa VISA Maintains visa
codes.

APIs used in Banner General with Student forms and tables

The following Student tables and forms use APIs to process data in Banner General and Banner
Student.

Table Form API Object Name API Entity Name Task
Performed

SPRADDR SPAIDEN gb_address ADDRESS Maintains
address
information.

SPBPERS SPAPERS gb_bio BIO Maintains
biographic/
demographic
information for
an individual.

SLBBLDG SLABLDG gb_bldgdefinition BLDGDEFINITION Maintains
building
information.

SSRMEET SSASECT gb_classtimes CLASSTIMES Maintains
section and
event meeting
times.

SPREMRG SPAEMRG gb_emergency_ contact EMERGENCY
CONTACT

Maintains
emergency

©2018 Ellucian. Confidential & Proprietary 203

APIs

Table Form API Object Name API Entity Name Task
Performed
contact
information for
an individual.

SPRHOLD SOAHOLD gb_hold HOLD Places or
removes holds
on an account.

SPRIDEN SPAIDEN gb_identification IDENTIFICATION Maintains
person and
non-person
biographic/
demographic
information.

— — gp_international_
student

INTERNATIONAL
STUDENT

Retrieves
international
student
information
from fsaATLAS.

SPRMEDI SPRMEDI gb_medical MEDICAL CODE Maintains
information
about medical
conditions.

SORPCOL SOAPCOL gb_prior_college PRIOR COLLEGE Maintains
a person’s
educational
background
information.

SORCONC SOAPCOL gb_pcol_ concentration PRIOR COLLEGE
CONCENTRATION

Maintains
educational
background
information
on areas of
concentration.

SORDEGR SOAPCOL gb_pcol_degree PRIOR COLLEGE
DEGREE

Maintains
educational
background
information on
degrees.

SORMAJR SOAPCOL gb_pcol_major PRIOR COLLEGE
MAJOR

Maintains
educational
background
information on
majors.

©2018 Ellucian. Confidential & Proprietary 204

APIs

Table Form API Object Name API Entity Name Task
Performed

SORMINR SOAPCOL gb_pcol_minor PRIOR COLLEGE
MINOR

Maintains
educational
background
information on
minors.

SLRRASG SLARASG gb_roomassignment ROOMASSIGNMENT Maintains
dorm room
assignments.

SLBRDEF SLARDEF gb_roomdefinition ROOMDEFINITION Maintains room
information by
building.

STVTERM STVTERM gb_stvterm STVTERM Queries term
validation
information.

SPRTELE SPATELE gb_telephone TELEPHONE Maintains
telephone
information.

gp_cardholder Process APIs
related to
campus card
cardholders.

gp_common_ matching Checks for the
existence of a
record within
the Banner
System based
on criteria
(rules) defined
for the source
of the data.

gp_entity_address Process API
to add or
update address
information
about a person
in the Banner
system.

gp_international_
student

Process API
to retrieve
International
Student
Information.

©2018 Ellucian. Confidential & Proprietary 205

APIs

Table Form API Object Name API Entity Name Task
Performed

gp_person_ identity Process API to
allow external
systems to
determine the
unique identifier
(ID number) for
a person.

APIs for internal Banner operations

Please be advised that several Banner General APIs are currently intended only to support internal
operations.

To ensure data integrity, these APIs are not supported when called by external applications or
interfaces to manipulate data. The recommendation for external applications is to use message
level integration to integrate with these entities in Banner.

The following APIs come under this disclaimer:

• gb_advq_util

• gb_common

• gb_event

• gb_gtvcall

• gb_gtvccrd

• gb_gtvcelg

• gb_gtvcmsc

• gb_gtvcurr

• gb_gtvdadd

• gb_gtvdicd

• gb_gtvdiro

• gb_gtvdocm

• gb_gtvdprp

• gb_gtvdstp

• gb_gtvdunt

• gb_gtvemal

• gb_gtvemph

• gb_gtveqnm

• gb_gtveqpg

©2018 Ellucian. Confidential & Proprietary 206

APIs

• gb_gtveqpm

• gb_gtveqts

• gb_gtvexpn

• gb_gtvfbpr

• gb_gtvfdmn

• gb_gtvfdtp

• gb_gtvfees

• gb_gtvinsm

• gb_gtvletr

• gb_gtvlfst

• gb_gtvmail

• gb_gtvmenu

• gb_gtvmtyp

• gb_gtvntyp

• gb_gtvobjt

• gb_gtvpara

• gb_gtvpars

• gb_gtvpdir

• gb_gtvprnt

• gb_gtvproc

• gb_gtvptyp

• gb_gtvpurp

• gb_gtvrate

• gb_gtvrevn

• gb_gtvrrac

• gb_gtvrsvp

• gb_gtvrtng

• gb_gtvschs

• gb_gtvscod

• gb_gtvsdax

• gb_gtvsdiv

• gb_gtvsegc

• gb_gtvsqpa

• gb_gtvsqpr

• gb_gtvsqru

• gb_gtvsrce

©2018 Ellucian. Confidential & Proprietary 207

APIs

• gb_gtvssfx

• gb_gtvsubj

• gb_gtvsvap

• gb_gtvsvba

• gb_gtvsvca

• gb_gtvsvcc

• gb_gtvsvcp

• gb_gtvsvcr

• gb_gtvsvdt

• gb_gtvsvel

• gb_gtvsvep

• gb_gtvsvft

• gb_gtvsvgo

• gb_gtvsvio

• gb_gtvsvit

• gb_gtvsvpc

• gb_gtvsvrp

• gb_gtvsvtr

• gb_gtvsvts

• gb_gtvsysi

• gb_gtvtarg

• gb_gtvtask

• gb_gtvtrtp

• gb_gtvtsta

• gb_gtvttyp

• gb_gtvuoms

• gb_gtvutyp

• gb_gtvviss

• gb_gtvvpdi

• gb_gtvwfed

• gb_gubobjs

• gb_stvaccg

• gb_stvacyr

• gb_stvascd

• gb_stvasrc

• gb_stvasty

©2018 Ellucian. Confidential & Proprietary 208

APIs

• gb_stvatyp

• gb_stvbchr

• gb_stvbldg

• gb_stvcamp

• gb_stvcipc

• gb_stvcitz

• gb_stvcnty

• gb_stvcoll

• gb_stvcomf

• gb_stvcoms

• gb_stvcomt

• gb_stvdays

• gb_stvdegc

• gb_stvdept

• gb_stvdisa

• gb_stvempt

• gb_stvethn

• gb_stvetyp

• gb_stvfcnt

• gb_stvgeod

• gb_stvgeor

• gb_stvhldd

• gb_stvlang

• gb_stvlead

• gb_stvlevl

• gb_stvlgcy

• gb_stvmajr

• gb_stvmatl

• gb_stvmdeq

• gb_stvmrtl

• gb_stvnatn

• gb_stvorig

• gb_stvprcd

• gb_stvptyp

• gb_stvrdef

• gb_stvrelg

©2018 Ellucian. Confidential & Proprietary 209

APIs

• gb_stvrelt

• gb_stvrmst

• gb_stvrrcd

• gb_stvsbgi

• gb_stvsite

• gb_stvspon

• gb_stvspsr

• gb_stvstat

• gb_stvsubj

• gb_stvtele

• gb_stvtrmt

• gb_xml_generator

©2018 Ellucian. Confidential & Proprietary 210

Interfaces

Interfaces
Interfaces

This section discusses the interfaces with external user systems and the interfaces within Banner.

Interfaces with external user systems

The following are the interfaces with external user systems.

GOKSVEX package

This package is the interface between the SEVIS Transfer Adapter (SEVISTA) and Banner. It
contains functions and procedures that select, update, insert, and delete data from the GORSVBH
and GOTSVBT tables. The package is executed externally by SEVISTA.

This package can also create a comma-separated value (CSV file) that can be imported into the
fsaATLAS application by the fsaATLAS Campus DataLink.

©2018 Ellucian. Confidential & Proprietary 211

Interfaces

GORSVBH table

This table contains the header information for SEVIS batch transaction records. The SEVISTA
external tool uses this table.

GOTSVBT table

This table contains detail records for SEVIS batch transaction records. The SEVISTA external tool
uses this table.

GURFEED table

This table contains financial transactions from Banner applications which are to be processed by the
client's Accounting system through a user interface program.

GURAPAY table

This table contains single line invoices from Banner applications which are to be processed by the
client's Accounts Payable system through a user interface program.

Interfaces within Banner

The following are the interfaces within Banner.

GURFEED table

This table contains financial transactions from other Banner applications or client-developed
applications which are to be processed into Banner Finance using the FURFEED and FGRTRNI
processes.

GURAPAY table

This table contains single line invoices from other Banner applications or client-developed
applications, which are to be processed into Banner using the FURAPAY process.

©2018 Ellucian. Confidential & Proprietary 212

Generate and Compile Forms

Generate and Compile Forms
Generate and Compile Forms

This section explains how to generate and compile Banner forms.

Mass form generation scripts

The following mass form generation scripts generate a single product’s forms objects. The scripts
are located in the appropriate product /misc or /com production directory.

Warning! Make sure you compile your forms in the Forms Compiler. You may receive
unpredictable results if you compile them in Forms Builder.

Product Forms

Windows

Forms

UNIX

Oracle Reports

Windows

Oracle Reports

UNIX

Accounts
Receivable

tasform.bat,
tasformr2.bat

tasform.shl,
tasformr2.shl

tasrept.bat,
tasreptr2.bat

tasrept.shl,
tasreptr2.shl

Advancement aluform.bat,
aluformr2.bat

aluform.shl,
aluformr2.shl

Financial Aid resform.bat,
resformr2.bat

resform.shl,
resformr2.shl

Finance fimform.bat,
fimformr2.bat

fimform.shl,
fimformr2.shl

fimrept.bat,
fimreptr2.bat

fimrept.shl,
fimreptr2.shl

General genform.bat,
genform1.bat,
genform2.bat,
comform.bat

genform.shl,
comform.shl

Payroll Module payform.bat,
payformr2.bat

payform.shl,
payformr2.shl

Position Control posform.bat,
posformr2.bat

posform.shl,
posformr2.shl

Student stuform.bat,
stuformr2.bat

stuform.shl,
stuformr2.shl

sturept.bat,
stureptr2.bat

sturept.shl,
stureptr2.shl

BDMS extform.bat,
extformr2.bat

extform.shl,
extformr2.shl

Follow the instructions included in the above scripts to mass generate Banner forms. Review the
documentation inside the specific script that you are about to execute.

©2018 Ellucian. Confidential & Proprietary 213

Generate and Compile Forms

COBOL compiling

This section provides general information about the COBOL compilation process, such as required
directories, file locations, and example scripts.

Banner compile scripts are provided for new installations and upgrades to compile all code in the
correct order. On UNIX and OpenVMS machines the output from the compile will be placed by
default in the exe subdirectory of the General product. If the compile routines for your port or site
write into the current directory, then the output from the compiles will have to be migrated before
they can be accessed by the users.

Note: If your compile procedure writes directly into the General product’s exe subdirectory, this
procedure must be run from an operating system account that has write permission into the target
Banner directories.

Compile COBOL under UNIX

Compiling COBOL code under the UNIX operating system is accomplished through the use of
the make command, a special-purpose scripting language usually provided as part of the UNIX
language development environment.

A makefile is needed for all but the most basic make operations; it specifies the actions to be taken
to perform particular tasks, such as making an executable from a COBOL source file, or building an
object file from a Pro*COBOL file.

To compile Banner Pro*COBOL code into executables, you must create a makefile that includes all
of the proper options and libraries for the combination of operating system, Oracle, and compiler
versions installed on your machine.

Create a Pro*COBOL makefile

The buildcob process is provided as a tool to assist Banner clients using UNIX systems in
constructing a valid Pro*COBOL makefile for their particular operating system, Oracle, and compiler
environment. Two files are provided: buildcob.c (source code for buildcob) and bancob.tpl (a Banner
makefile template.)

About this task

To use buildcob, follow these steps:

Procedure

1. Log in as your Banner owner.
2. Make sure that your environment reflects the proper ORACLE_HOME. This is necessary because

the buildcob process uses an Oracle demo makefile as a model and must be able to find it.

©2018 Ellucian. Confidential & Proprietary 214

Generate and Compile Forms

3. Enter the following:

cd $BANNER_HOME/install

4. Compile the buildcob.c file with an ANSI-compliant C compiler. Some compilers require
command-line parameters to recognize ANSI code; refer to your compiler documentation for
details.
Example: cc buildcob.c -o buildcob

5. Execute buildcob and respond to the on-screen messages and prompts.

Note: The value for your COBOL compiler may differ from the default.

6. You should now have a makefile with the default name of sctprocb.mk in the $BANNER_HOME/
general/cob directory. Use this makefile to compile a Banner Pro*COBOL program, and
make changes to sctprocb.mk to resolve any errors. Sequent, NCR, and DEC Ultrix machines
require that COMP5=YES be passed to the pre-compiler for byte storage compatibility. Other
platforms may require that this be commented out.

If you find that your local environment requires changes from the defaults, you may directly edit
the provided bancob.tpl file so that your changes are preserved when you rerun the buildcob
process in the future.

Example buildcob session

The following is an example dialog from a run of the buildcob process under the Digital UNIX
operating system.

% cc buildcob.c -o buildcob
% buildcob

buildcob is a program that assists in the creation of a Banner Pro*COBOL makefile. Using
a provided template and an Oracle makefile from your current release of the Oracle software,
buildcob generates a new makefile that should work with your operating system and Pro*COBOL
release.

Note: The generated makefile also includes comments to guide you in making manual changes if
necessary.

You will now be prompted for information needed by the buildcob program. The default value
for each option appears in parentheses after the prompt; if you want to accept the default for a
particular option just hit enter. Each of these defaults is defined in a macro in the buildcob source
code, making the setting of local defaults simple; comments in the source code explain the process.

Enter the name of your COBOL compiler; if your compiler is not present in your path, then you will
need to specify a full directory reference.

e.g., /usr/local/cob
COBOL Compiler? (cob)

©2018 Ellucian. Confidential & Proprietary 215

Generate and Compile Forms

Enter the name of the template file to be used to generate your new makefile. If you make local
modifications to the provided template then you may want to copy the template to a different name
and enter that name below.

SCT makefile template? (bancob.tpl)

Enter the name of the model Oracle makefile. Oracle provides an example Pro*COBOL makefile
that is used to make example programs and the Pro*COBOL executable itself; this file is scanned
by buildcob to extract the proper library definitions for your system.

Oracle makefile model? (/u02/app/oracle/product/9.2.0
 /precomp/demo/procob/procob.mk)

Enter the name of the new makefile that buildcob will generate; if a file by that name already
exists it will be overwritten.

New makefile to create? (/yy/banner/general/cob /sctprocb.mk)

bancob.tpl/yy/banner/general/cob/sctprocb.mkbuildcob terminated normally
Using sctprocb.mk

To use the sctprocb.mk makefile, position yourself to the directory containing the source code to
be compiled, and enter a make command specifying both the makefile and the file to be generated.

make -f $BANNER_HOME/general/cob/sctprocb.mk PHPFEXP

Refer to your operating system documentation for further details on makefile construction and
usage.

Reduce executable sizes

Pro*COBOL executables may be extremely large on some UNIX platforms, with implications for
both runtime performance and storage requirements. To reduce the size of executables, you may
choose to use the Oracle Run Time System (rtsora) and compile your Pro*COBOL code to .gnt files,
or you may use shared objects to provide dynamic linking at runtime.

Note: One, both, or neither of these methods may be available on your particular platform; refer to
your Oracle and operating system documentation for further information.

To use the Oracle Run Time System, you must build an rtsora executable in your
$ORACLE_HOME/bin directory using an Oracle-provided procedure. Banner supports the Oracle
Run Time System by using two environment variables, COBPREF and COBSUFX, in all shell
scripts that execute COBOL programs. These variables are created in cbanenv and banenv with
null values; if you are using .gnt files, then COBPREF should be set to rtsora and COBSUFX to
.gnt. The other alternative is to use dynamic linking, or shared objects. If your operating system
and Oracle release support this option, then modify your copy of sctprocb.mk and add -lclntsh at
the beginning of the LLIBS macro definition.

©2018 Ellucian. Confidential & Proprietary 216

Generate and Compile Forms

Example:

LLIBS=-lclntsh $(COBSQLINTF) $(LLIBSQL) $(TTLIBS)

Also, the environment variable LD_LIBRARY_PATH will need to be defined in order for the shared
object references to be resolved at runtime.

Example:

LD_LIBRARY_PATH=/usr/lib/cob/coblib:/u02/app/oracle
 product/9.2.0/lib export LD_LIBRARY_PATH

Stripping your executables of debugging information may also significantly decrease their size; this
can usually be done at compile time with the -s switch to the compiler, or later with the stand-alone
strip program. Also, if you are using certain versions of SVR4-based operating systems (such as
Dynix/ptx), the mcs-d command can be used to strip internal comments from the executables.

Compile COBOL under OpenVMS

All Banner Pro*COBOL compiles under OpenVMS use the command file sctprocb.com, located
in the General product’s com subdirectory. This command file executes the Oracle precompile,
COBOL compile and link steps. In particular, the link step is performed by the Oracle-provided
command file lnprocob.com, making sctprocb.com generally independent of Oracle releases.

Executing sctprocb with no arguments will provide usage notes similar to the following:

USAGE: @gen$com:sctprocb <program> [options]
OPTIONS:
-O generates object only
-L generates the complete listing
-D compiles in debug mode
-C generates and saves .COB from the precompile
-S stop after executing pre-compiler

In addition, if a full parse of the source code is necessary, you must set the symbol CHECKOPT with
an appropriate value before executing sctprocb.

Example:

$ CHECKOPT=”sqlcheck=full userid=baninst1/u_pick_it”

Initial installation

Instructions for doing a complete compile of all Pro*COBOL programs appear in the Banner Initial
Install Guide. The information in this section is intended to provide complete instructions for and

©2018 Ellucian. Confidential & Proprietary 217

Generate and Compile Forms

context of COBOL compiling. The steps outlined in this section should have already been performed
at your site.

COBOL Compiling during Banner installation

For an initial installation of Banner, all products that have COBOL programs need to have them
compiled. The Banner installation process uses the script banccob.shl on UNIX or banccob.com on
OpenVMS to compile all COBOL code.

You may use the .shl (UNIX), .com (OpenVMS), or .pl (Windows) versions of the scripts below to
compile a single product's COBOL code. The scripts are located in the appropriate product’s /misc
or /com production directory.

Banner product COBOL compile procedures

The following is a list of the Banner products and their COBOL compile procedures.

Banner Product Compile Procedures

A/R Module tascmpl

Advancement none

Finance none

Financial Aid rescmplx

General gencmpl

INAS (where x equals the last digit of the aid
year)

rescomplx

Payroll Module paycmpl

Student stucmpl

Executables are built in the $BANNER_HOME/general/exe directory. This directory must be in the
PATH of each Banner user.

UNIX

Below is a sample of the Banner General COBOL compile shell script.

gencmpl.shl
#
cd $BANNER_LINKS
#
make -f $BANNER_LINKS/sctprocb.mk GUAGETP.o
make -f $BANNER_LINKS/sctprocb.mk GUASETR.o \
CHECKOPT=”sqlcheck=full userid=baninst1/u_pick_it”

©2018 Ellucian. Confidential & Proprietary 218

Generate and Compile Forms

make -f $BANNER_LINKS/sctprocb.mk GUAVRFY \
BANOBJ=$BANNER_HOME/general/exe/GUAGETP.o
make -f $BANNER_LINKS/sctprocb.mk GLOLETT \
BANOBJ=$BANNER_HOME/general/exe/GUAGETP.o
make -f $BANNER_LINKS/sctprocb.mk GLBPARM \
BANOBJ=$BANNER_HOME/general/exe/GUAGETP.o
make -f $BANNER_LINKS/sctprocb.mk GLBDATA \
BANOBJ=$BANNER_HOME/general/exe/GUAGETP.o
make -f $BANNER_LINKS/sctprocb.mk GLBLSEL \
BANOBJ=$BANNER_HOME/general/exe/GUAGETP.o

OpenVMS

Below is a sample of the Banner General COBOL compile command script.

$! GENCMPL.COM
$! Command procedure to drive compilation of GENERAL Cobol programs.
$!
$ CHECKOPT=”sqlcheck=full userid=baninst1/u_pick_it”
$!
$ @gen$com:sctprocb gen$pco:glolett

Windows

Below is a sample of the Banner General COBOL compile command script.

use sctcomp;
$sctcomp_product_dir = “general”;
$sctcomp_input_file_ref = *DATA;
&sctcomp_cobol_process;
END
GUAGETP.pco -exetype=obj
GUASETR.pco -exetype=obj -checkopt=full
GUAVRFY.pco
GLOLETT.pco
GLBPARM.pco
GLBDATA.pco
GLBLSEL.pco

C compiling

This section provides general information about the C compilation process, such as necessary
directories, file locations, and example scripts.

Banner compile scripts are provided for new installations and upgrades to compile all code in the
correct order. On UNIX and OpenVMS machines the output from the compile will be placed by
default in the exe subdirectory of the General product. If the compile routines for your port or site

©2018 Ellucian. Confidential & Proprietary 219

Generate and Compile Forms

write into the current directory, the output from the compiles will have to be migrated before they can
be accessed by the users.

Note: If your compile procedure writes directly into the General product’s exe subdirectory, this
procedure must be run from an operating system account that has write permission into the target
Banner directories.

Compile C under UNIX

Compiling C code under the UNIX operating system is accomplished through the use of the make
command, a special-purpose scripting language usually provided as part of the UNIX language
development environment.

A makefile is needed for all but the most basic make operations; it specifies the actions to be taken
to perform particular tasks, such as making an executable from a C source file, or building an object
file from a Pro*C file.

To compile Banner Pro*C code into executables, you must create a makefile that includes all of the
proper options and libraries for the combination of operating system, Oracle and compiler versions
installed on your machine.

Create a Pro*C makefile

The buildmk process is provided as a tool to assist Banner clients using UNIX systems in
constructing a valid Pro*C makefile for their particular operating system, Oracle, and compiler
environment. Two files are provided: buildmk.c (source code for buildmk) and banc.tpl (a Banner
makefile template.)

About this task

To use buildmk, follow these steps:

Procedure

1. Log in as your Banner owner.
2. Make sure that your environment reflects the proper ORACLE_HOME. This is necessary because

the buildmk process uses an Oracle demo makefile as a model and must be able to find it.
3. Enter the following:

cd $BANNER_HOME/install

4. Compile the buildmk.c file with an ANSI-compliant C compiler. Some compilers require
command-line parameters to recognize ANSI code; refer to your compiler documentation for
details.

cc buildmk.c -o buildmk

©2018 Ellucian. Confidential & Proprietary 220

Generate and Compile Forms

5. Execute buildmk and respond to the on-screen messages and prompts.

Note: The value for your C compiler may differ from the default.

6. You should now have a makefile with the default name of sctproc.mk in the $BANNER_HOME/
general/cob directory. Use this makefile to compile a Banner Pro*C program, and make
changes to sctproc.mk to resolve any errors.

If you find that your local environment requires changes from the defaults, you may directly
edit the provided banc.tpl file so that your changes are preserved when you rerun the buildmk
process in the future.

Example buildmk session

This is a tool. It is not guaranteed to produce a working makefile.

The following is an example dialog from a run of the buildmk process under the Digital UNIX
operating system:

$ cc buildmk.c -o buildmk
$ buildmk

The program, buildmk, assists in the creation of a Banner Pro*C makefile. Using a provided
template and an Oracle makefile from your current release of the Oracle software, buildmk
generates a new makefile that should work with your operating system and Pro*C release.

Note: The generated makefile also includes comments to guide you in making manual changes if
necessary.

You will now be prompted for information needed by the buildmk program. The default value
for each option appears in parentheses after the prompt; if you want to accept the default for a
particular option, press the Enter key. Each of these defaults is defined in a macro in the buildmk
source code, making the setting of local defaults simple; comments in the source code explain the
process.

Enter the name of your C compiler; if your compiler is not present in your path, then you will need to
specify a full directory reference.

e.g., /usr/opt/local/gcc
C Compiler? (cc)

Enter the name of the template file to be used to generate your new makefile. If you make local
modifications to the provided template then you may want to copy the template to a different name
and enter that name below.

SCT makefile template? (banc.tpl)

©2018 Ellucian. Confidential & Proprietary 221

Generate and Compile Forms

Enter the name of the model Oracle makefile. Oracle provides an example Pro*C makefile that is
used to make example programs and the Pro*C executable itself; this file is scanned by buildmk to
extract the proper library definitions for your system.

Oracle makefile model? (/u02/app/oracle/product/9.2.0
 precomp/demo/proc/proc.mk)

Enter the name of the new makefile that buildmk will generate; if a file by that name already exists it
will be overwritten.

New makefile to create? (/yy/banner/general/c
 /sctproc.mk)
banc.tpl
/yy/banner/general/c/sctproc.mk
buildmk terminated normally

Use sctproc.mk

To use the sctproc.mk makefile, go to the directory containing the source code to be compiled, and
enter a make command specifying both the makefile and the file to be generated.

Example:

make -f $BANNER_HOME/general/c/sctproc.mk gurtabl

Refer to your operating system documentation for further details on makefile construction and
usage.

Added switch for sctproc.mk file

With Release 7.2, a manual change must be made to your site-specific sctproc.mk file. This
change is necessary whether your site is using Oracle 9i or 10g.

Under Oracle 10g, 10.1.0.2, and 10.1.0.3, there is an Oracle issue that causes the Pro*C
precompile to not recognize nested SQL INCLUDE statements. The guaorac.c file, used by every
Banner Pro*C program, was modified for Release 7.2 to use the standard precompiler #include
directive to include the oraca.h and sqlca.h files as a workaround for the defect. Because of
this change, the manual change to sctproc.mk is necessary. In sctproc.mk you must specify
an additional –I switch for the CFLAGS macro to include the $ORACLE_HOME/precomp/public
directory. For example:

CFLAGS=-I. \
 -I$(GINC) \
 -I$(ORACLE_HOME)/precomp/public \
 -O $(ANSI) $(STRIP) $(CCHECK) $(ENV) \
 $(SCT_DEBUG) $(OTHER_C_FLAGS)

©2018 Ellucian. Confidential & Proprietary 222

Generate and Compile Forms

Reducie executable sizes

Pro*C executables may be extremely large on some UNIX platforms, with implications for both
runtime performance and storage requirements. To reduce the size of executables, you may be
able to use shared objects to provide dynamic linking at runtime. Refer to your Oracle and operating
system documentation for further information.

If your operating system and Oracle release support dynamic linking, also known as shared objects,
then modify your copy of sctproc.mk and add -lclntsh at the beginning of the LLIBS macro definition.

Example:

LLIBS=-lclntsh $(PROLDLIBS)

Also, the environment variable LD_LIBRARY_PATH will need to be defined in order for the shared
object references to be resolved at runtime.

Example:

LD_LIBRARY_PATH=/u02/app/oracle/product/9.2.0/libexport LD_LIBRARY_PATH

Stripping your executables of debugging information may also significantly decrease their size; this
can usually be done at compile time with the -s switch to the compiler, or later with the stand-alone
strip program. Also, if you are using certain versions of SVR4-based operating systems (such as
Dynix/ptx), the mcs-d command can be used to strip internal comments from the executables.

Compile C under OpenVMS

All Banner Pro*C compiles under OpenVMS use the command file sctproc.com, located in the
General product’s com subdirectory. This command file executes the Oracle precompile, COBOL
compile and link steps. In particular, the link step is performed by the Oracle-provided command file
lnproc.com, making sctproc.com generally independent of Oracle releases.

Usage for sctproc.com is as follows:

USAGE: @gen$com:sctproc file_name [obj] [sqlcheck_option] [defines]
 @gen$com:sctproc genobjs userid/password
OPTIONS: obj - compile to object only sqlcheck_option - one of:
none
syntax
limited
“full userid=name/password”
“semantics userid=name/password”
defines - other definitions to be passed to the compiler, e.g
 (no_sleep_sw,opsys_vms) genobjs - to compile the General support
 objects

©2018 Ellucian. Confidential & Proprietary 223

Generate and Compile Forms

Initial installation

Instructions for doing a complete compile of all Pro*C programs appear in the Banner Initial Install
Guide. The information in this section is intended to provide complete instructions for and context of
C compiling. The steps outlined in this section should have already been performed at your site.

C Compiling during Banner installation

For an initial installation of Banner, all products that have C programs need to have them compiled.
The Banner installation process uses the script bancc.shl on UNIX or bancc.com on OpenVMS to
compile all C code.

You may use the .shl (UNIX), .com (OpenVMS), or .pl (Windows) versions of the scripts below to
compile a single product's C code. This step may execute for several hours depending on your
machine speed and how many Banner products you are installing. The scripts are located in the
appropriate product’s /com or /misc production subdirectory.

Banner C compile procedures

The following is a list of the Banner products and their C compile procedures.

Banner Product Compile Procedures

A/R System tascmplc

Advancement alucmplc

Finance fincmplc

Financial Aid rescmplc

General gencmplc

Payroll paycmplc

Position Control poscmplc

Student stucmplc

Executables are built in the $BANNER_HOME/general/exe directory. This directory must be in the
PATH of each Banner user.

UNIX

Below is a sample of the Banner General C compile shell script.

:# gencmplc.shl
#
cd $BANNER_LINKS
make -f $BANNER_HOME/general/c/sctproc.mk genobjs \

©2018 Ellucian. Confidential & Proprietary 224

Generate and Compile Forms

CHECKOPT=”sqlcheck=full userid=baninst1/u_pick_it”
make -f $BANNER_HOME/general/c/sctproc.mk gjrrpts
make -f $BANNER_HOME/general/c/sctproc.mk gurpded
make -f $BANNER_HOME/general/c/sctproc.mk glrletr
make -f $BANNER_HOME/general/c/sctproc.mk gppaddr
make -f $BANNER_HOME/general/c/sctproc.mk gurhelp
make -f $BANNER_HOME/general/c/sctproc.mk gurtabl
make -f $BANNER_HOME/general/c/sctproc.mk gurinso
make -f $BANNER_HOME/general/c/sctproc.mk gurskel
make -f $BANNER_HOME/general/c/sctproc.mk guaprpf
make -f $BANNER_HOME/general/c/sctproc.mk gurjobs \
CHECKOPT=”sqlcheck=full userid=baninst1/u_pick_it”

OpenVMS

Below is a sample of the Banner General C compile command script.

$! gencmplc.com
$ set def gen$c
$@gen$com:sctproc genobjs “full userid=baninst1/
u_pick_it”
$@gen$com:sctproc gjrrpts
$@gen$com:sctproc gurpded
$@gen$com:sctproc glrletr
$@gen$com:sctproc gppaddr
$@gen$com:sctproc gurhelp
$@gen$com:sctproc gurtabl
$@gen$com:sctproc gurinso
$@gen$com:sctproc gurskel
$@gen$com:sctproc guaprpf
$@gen$com:sctproc gurjobs “full userid=baninst1
u_pick_it”

Windows

Below is a sample of the Banner General COBOL compile command script.

use sctcomp;
$sctcomp_product_dir = “general”;
$sctcomp_input_file_ref = *DATA;
$sctcomp_c_process;
END
guastdf.c -exetype=obj -checkopt=full
guaorac2.pc -exetype=obj -checkopt=full
guawslp.c -exetype=obj
guarpfe.c -exetype=obj -checkopt=full
gjpprun.pc -checkopt=full
gjrrpts.pc
gurpded.pc
glrletr.pc
gppaddr.pc
gurhelp.pc

©2018 Ellucian. Confidential & Proprietary 225

Generate and Compile Forms

gurinso.pc -ckeckopt=full
gurskel.pc
gurtabl.pc
guaprpf.c
gurjobs.pc -checkopt=full

©2018 Ellucian. Confidential & Proprietary 226

Desktop Tools

Desktop Tools
Desktop Tools

With Banner Spreadsheet Budgeting, you can authorize a user to download from Banner tables and
upload into Banner tables. Spreadsheet Budgeting accommodates both basic budget analysis tasks
and customized wage and salary analysis.

Spreadsheet Budgeting is a Banner enhancement that uses the Desktop Tools application to access
data from the Banner Financial and Human Capital Management Systems.

Information about using Spreadsheet Budgeting to create operating budgets is contained in
the Banner Finance Spreadsheet Budgeting Handbook. Information about using Spreadsheet
Budgeting to create salary and position budgets is contained in the Banner Position Control
Spreadsheet Budgeting Handbook.

Desktop Tools overview

Desktop Tools allows Banner users to access their data from a PC application such as Microsoft
Excel. Desktop Tools contains a Dynamic Link Library (DLL) file and Microsoft Visual Basic runtime
files. Together the files accomplish the interconnection between the Banner database and PC
applications.

Seed numbers and the database definitions are stored in an encrypted configuration file updated
by system administrators using the tool GODTTOPConfig.exe. With Desktop Tools version 8.5,
the GODDTOP.DLL no longer needs custom re-compilation to add database information as with
prior Desktop Tools versions. By adding seed number and database information to a separate
configuration file, the DLL can connect to the Banner database the same way as the Banner forms.

Implementation specialists or DBAs can create their own Add-In applications using Visual Basic and
the Banner General forms delivered for the Desktop Tools product. The Visual Basic source code
includes a small utility ToolsUpdate that can be used when custom applications require changes to
the baseline DLL in the client PC. ToolsUpdate performs registry updates on client PC’s if there are
changes to the GODDTOP.DLL file, but ToolsUpdate is not needed with the baseline Desktop Tools
application.

Each client PC can connect to Banner with a different version of the Desktop Tools file
GODDTOP.DLL or a different configuration file if desired.

Minimum system requirements

To ensure the successful implementation of Desktop Tools, the following software must be installed
for each client PC.

• Microsoft Windows 2000 or higher
• Microsoft Excel 32-bit version supported for the applicable Windows operating system
• Oracle Net8 Client Software or greater (32-bit)

This is required for any application like Desktop Tools to communicate with the Oracle database.

©2018 Ellucian. Confidential & Proprietary 227

Desktop Tools

Note: Please refer to FAQ 1-10RRQH6 for additional information about Desktop Tools and
system compatibility.

Desktop Tools configuration

The following steps are performed by system administrators before installation can begin on client
PC’s.

• Unpack Desktop Tools application files (using goddtop.exe)
• Update the configuration file (using GODDTOPConfig.exe)
• Distribute files for client PC installation

After these preparatory tasks are performed, Desktop Tools can be installed on client PC’s.

Unpack Desktop Tools application files

The following tasks are performed to unpack and install the administrator’s version of the Desktop
Tools application and configuration files.

Procedure

1. Locate the file goddtop.exe in the directory BANNER_HOME\general\desktop.
2. Launch goddtop.exe to begin the unpacking process for Banner Desktop Tools Configuration.

Follow the setup instructions on screen.
3. The installation program prompts you for a target directory of the configuration files used only

the administrator. Select the target directory. (The default is C:\banner\goddtop.)
4. Select one or both of the components that you want to install into the target directory.

• GODDTOP Setup Application—Select this component if you want to distribute Desktop
Tools to client PC’s. The administrator’s configuration files will be installed in the target
directory and the setup program will be installed in the \setup folder of the target directory.
This component contains the files required to create encrypted configuration files and the
setup program that will be distributed for installation of Desktop Tools on client PC’s.

• GODDTOP Source Code (optional custom compile) — Select this component if you want
to customize the application or recompile the Visual Basic DLL. The source files will be
installed in the \source folder of the target directory. This component contains the source
code for:

– GODDTOP.exe, the Visual Basic application file
– GODDTOPConfig.exe, a utility for updating the encrypted configuration file
– ToolsUpdate.exe, an optional utility tool that allows easy registry updates if customized

DLLs are used when implementing Desktop Tools.

©2018 Ellucian. Confidential & Proprietary 228

Desktop Tools

Note: Customization of the DLL or recompiling the DLL will require Microsoft Visual
Studio (Professional Edition). These optional activities are not typical for Desktop Tools
8.5 and higher.

5. Click Next to install the selected components.

Update the configuration file

This task is performed by system administrators only and prepares a configuration file necessary for
client PC’s installing Desktop Tools. Administrators must customize the configuration file goddtop.ini
by adding database connection information for one or more Banner databases.

About this task

The GODDTOP.DLL connects to the Banner database the same way as Banner forms do, and
Banner’s role-level security will use the encrypted seed numbers and database names supplied by
the Desktop Tools configuration file to connect with the database.

Note: To perform this task you will need to obtain the seed numbers established on the Banner
Security Maintenance Form GSASECR by authorized staff according to the policies and procedures
defined for your Banner installation.

A simple-to-use tool supplied as GODDTOPConfig.exe is used to update the configuration file as
follows:

Procedure

1. Locate the file GODDTOPConfig.exe in the target directory. The target directory must also
contain a copy of the goddtop.ini configuration file added during the unpacking process.

2. Launch GODDTOPConfig.exe.
3. Click the Add Line button to create a new database entry and then key in the database

instance name and seed numbers.
4. Repeat Step 3 for all of the database instances that apply for the user group receiving the

configuration file.
5. Click the Save button to update your changes, otherwise changes will not be saved.
6. Use the Cancel button if you want to discard unsaved changes and revert to the previously

saved settings to continue editing.
7. After changes are saved, close the window to exit. Unsaved changes in progress will be

discarded.

©2018 Ellucian. Confidential & Proprietary 229

Desktop Tools

Distribute files for client PC installation

Access to the following two files will be required to install Desktop Tools on a client PC.

• Each client PC must run a copy of the program file goddtop-setup.exe. The file can be found
in the administrator’s \setup folder after the unpacking process and can be copied or made
available to the client PC.

• The goddtop.ini file updated by the administrator using GODDTOPConfig.exe must be copied
to each Client PC. This file contains the appropriate database connection information prepared
according to the instructions above, “Update the Configuration File”.

The detailed Instructions for using these files with a client PC are described in the following section
“Client PC Installation”.

Uninstall Desktop Tools configuration

An administrator’s installation of “Banner Desktop Tools Configuration” can be removed or
uninstalled from the Windows Control Panel. The uninstall process will remove the files from each
target directory where goddtop.exe was installed.

Warning! The administrator’s customized configuration files, the client setup program and the
source code files added by goddtop.exe will all be removed.

Note: Uninstalling Desktop Tools Configuration will not delete the goddtop.ini configuration file
needed to use the Desktop Tools client application when both the Desktop Tools Configuration and
the Desktop Tools client application were installed in the same target directory on an administrator’s
PC. The administrator’s Banner Desktop Tools client will continue to work and has its own uninstall
process.

Client PC installation

To install Banner Desktop Tools on a client PC, complete the following tasks.

Procedure

1. If applicable, uninstall previous versions of “Banner Desktop Tools” from the Windows Control
Panel using the instructions below. (The program may also be listed as “SCT Desktop Tools” for
installed versions before Desktop Tools 8.5.)

Note: If the uninstall option is no longer available it may be necessary to unregister
GODDTOP.DLL manually before proceeding. Please contact your system administrator. In
some cases it may be necessary to reboot your PC after updating a prior installation of Desktop
Tools.

©2018 Ellucian. Confidential & Proprietary 230

Desktop Tools

Warning! Only one version of GODDTOP.DLL should be installed on your machine at a
time. Each installation of Desktop Tools with goddtop-setup.exe creates a registry entry for
GODDTOP.DLL which would normally be removed during a successful uninstall process
for Banner Desktop Tools. Never copy a new DLL over an existing DLL. COM DLL’s must
be registered by the Windows registry. If not done properly, behavior of the Desktop Tools
application is unpredictable.

2. Locate the installation file goddtop-setup.exe supplied by your system administrator.
3. Launch goddtop-setup.exe to begin the setup for Banner Desktop Tools. Follow the setup

instructions provided on screen.
4. The installation program prompts you for a target directory of the application files. Select the

target directory. (The default is C:\banner\goddtop.)
5. Click the Next button to begin the installation.
6. After the installation is complete GODDTOP.DLL is registered automatically.
7. Locate the required configuration file goddtop.ini supplied by your system administrator.
8. Copy the goddtop.ini file to your selected target directory from step 4. Typically, it will be

necessary to overwrite an existing file.

Note: The following instructions relate to Microsoft Excel.

9. If applicable, remove or de-activate any “Desktoptools” Add-In left from a prior installation of
Desktop Tools. If the “Desktoptools” Add-In was present and removed during this step, close
Microsoft Excel and then re-open Excel. The Excel Add-Ins menu named “Banner” should not
be visible.

10. From the Excel Add-In menu, enable the Add-In “Desktoptools” using the file Desktoptools.xla
located in the installation target directory. After the Add-In is active, a new Excel Add-Ins menu
named “Banner” will be visible.

11. From the Banner menu in Excel, click the menu option “Connect to Database”.
12. Enter valid login credentials and click “Connect”.
13. After a successful connection, the Excel title bar will be updated to display “Connected to

Banner: username@database”.

Note: If a client PC is updated with a new version of the goddtop.ini setup file, close Excel and
re-open to refresh the connection settings.

Note: In some cases, you may need to adjust Excel macro security settings to run Banner
Desktop Tools.

Note: Please refer to the Position Control Spreadsheet Budgeting Handbook or the Finance
Spreadsheet Budgeting Handbook to establish the necessary security for individual user access
to the wizards and features found in the Banner/Spreadsheet Budgeting menu.

©2018 Ellucian. Confidential & Proprietary 231

Desktop Tools

Uninstall Banner Desktop Tools from a client PC

To uninstall “Banner Desktop Tools” from a client PC, complete the following tasks.

Procedure

1. Close Microsoft Excel.
2. Open the list of installed programs from the Windows Control Panel.
3. Remove or uninstall the Banner Desktop Tools program.
4. Open Microsoft Excel and remove or de-activate the “Desktoptools” Add-In.

Note: Uninstalling Banner Desktop Tools will not affect the files needed by an administrator
if installed in the same target directory. The administrator’s files and components will not be
removed.

Installation of Desktop Tools in other environments

You can install Desktop Tools in other environments such as Macintosh and Citric.

Macintosh

To install Desktop Tools on a Macintosh computer, you must use a PC emulator program. With a
PC emulator program, you can install Desktop Tools following the procedures for installation on a
regular PC.

Citrix

Perform the following steps to install Desktop Tools on machines that run the Citrix server software.

Procedure

1. Log on to the console as the administrator.
2. Put the machine into INSTALL mode.
3. Restrict access to the machine.
4. Follow the steps for installation that appear on your screen.
5. Ensure that the specified user groups have access to GODDTOP.DLL and to GODDTOP.XLA.
6. Place GODDTOP.XLA into the Microsoft Office Library directory.

©2018 Ellucian. Confidential & Proprietary 232

Desktop Tools

Forms

The following is a list of Desktop Tools forms.

Desktop Tools Add – In Application Form (GOADADD)

This form lets you associate wizards and data lookups with an add-in, and specify the order in which
the wizards and data lookups appear. You can associate multiple wizards and data lookups with a
single add-in code.

Desktop Tools – Wizard Steps Setup Application Form (GOADSTE)

This form lets you assign steps (wizard windows) to a wizard, and assign specific property values to
each step.

Desktop Tools – Step Property Values Rule Form (GORDPRP)

This form lets you associate values with the property codes that are defined on the Desktop Tools -
Step Property Validation Form (GTVDPRP).

A value is a specific object, such as a picture of a bag of money, that belongs to a property category
such as “Picture.” A step is a collection of properties that appears on a wizard window and controls
the way a user interacts with an add-in. You can use the values delivered with Banner, or you can
create your own. You can associate multiple values with a single property code.

Desktop Tools – User Security Rule Form (GORDSEC)

This form lets you establish user access for the specific wizards associated with an add-in. You can
grant a user access to the wizards from multiple add-ins, if necessary.

For example, in Banner Spreadsheet Budgeting, you can grant a user authorization to download,
validate, and upload data from and to Banner tables. You can copy user privileges from one ID to
another.

©2018 Ellucian. Confidential & Proprietary 233

Desktop Tools

Desktop Tools – Step Type Properties Rule Form (GORDSTP)

This form lets you associate properties with a step type code. A step is a collection of properties that
appears on a wizard window and controls the way a user interacts with an add-in such as Banner
Spreadsheet Budgeting. This form lets you customize the appearance of each wizard window.

Desktop Tools – Add-In Validation Form (GTVDADD)

This form lets you create and maintain add-in codes. An add-in is a program, such as Banner
Spreadsheet Budgeting, that adds extra features to an application such as Microsoft Excel. You can
use the add-in codes delivered with Banner and create your own.

Desktop Tools – Step Property Validation Form (GTVDPRP)

This form lets you create and maintain property codes. A property is a type of object, such as an
option button or a picture, that appears on a step (wizard window). When combined with steps,
properties control the way a user interacts with an add-in such as Banner Spreadsheet Budgeting.

Desktop Tools – Step Type Validation Form (GTVDSTP)

This form lets you create and maintain step type codes. A step is a collection of properties that
appears on a wizard window and controls the way a user interacts with an add-in such as Banner
Spreadsheet Budgeting.

Tables

The following is a list of Desktop Tools forms.

GTVDADD Desktop Tools--Add-In Validation Table

GTVDPRP Desktop Tools--Step Property Validation Table

GORDPRP Desktop Tools--Step Property Repeating Table

GTVDSTP Desktop Tools--Step Type Validation Table

GORDSTP Desktop Tools--Step Type Property Repeating
Table

GORDSEC Desktop Tools--User Security Repeating Table

GORDWIZ Desktop Tools--Add-In Wizard Association
Repeating Table

GORDLUP Desktop Tools--Add-In Data Lookup Repeating
Table

GORDSTE Desktop Tools--Wizard Step Repeating Table

©2018 Ellucian. Confidential & Proprietary 234

Desktop Tools

GORDSPR Desktop Tools--Wizard Step Properties
Repeating Table

GOTDWKS Worksheet Snapshot Table

GOTDMSG Temporary Desktop Tools Message Table

GOTDPAR Temporary Desktop Parameters Table

©2018 Ellucian. Confidential & Proprietary 235

System-Required Data

System-Required Data
System-Required Data

Banner is a complex system with many parts that work together to manage your institution’s data
and to interact with users. When any one of the components of the system is missing, some of the
system’s functions may fail or may not work as intended.

In some cases, data itself can be considered an essential component of the system. The complete
contents of certain tables, and specific rows in other tables, must be present for the system to work
correctly. This essential data is called system-required data. System-required data is a subset of
the seed data delivered with a new Banner installation. New Banner software releases often include
seed data scripts that deliver additional system-required data.

Generally, Banner forms and processes will prevent you from deleting system-required data. But
when you are using database tools or scripts to delete rows from the database—for example, during
database cleanup to remove sample data before migrating into production—there is nothing to
prevent essential data from being accidentally deleted. In those situations, you should take care not
to delete any system-required data.

In many tables there is a System-Required Indicator column (for example, SYSTEM_REQ_IND). If
the indicator has a value of Y, the row is presumed to be system required. But the system-required
indicator is not a foolproof guide to Banner’s system-required data, because:

• Some tables do not have a system-required indicator, but nonetheless contain essential data.
• Some tools and processes allow users to mark rows as system required, even if they are not

essential for system operation.

This chapter lists system-required data for Banner General. Other system-required data is listed in
the following documents:

• Banner GTVSDAX Handbook

• Banner Accounts Payable TRM Supplement

• Banner Advancement TRM Supplement

• Banner Finance TRM Supplement

• Banner Financial Aid TRM Supplement

• Banner Human Resources TRM Supplement

• Banner Student TRM Supplement

System-Required Tables

Tables Owned by BANSECR

Tables owned by the BANSECR user ID provide the data for Banner’s object/user security system,
including the permissions that allow the components of the Banner system to operate. These tables
should never be included in automated database purge processes. If it becomes necessary to clean
up the tables owned by BANSECR, it should be done carefully and manually by an administrator
familiar with the institution’s security setup.

©2018 Ellucian. Confidential & Proprietary 236

System-Required Data

Large tables

Some General tables are delivered with hundreds of system-required rows, and it would be
impractical to reprint their complete data here. Before making changes to these tables, you may
want to save an export of their data in case it becomes necessary to restore them later.

• Report/Process Definition Table (GJBJOBS)
• Jobs Parameter Definition Table (GJBPDEF)
• Default Parameter Table (GJBPDFT)
• General Jobs Parameter Value Table (GJBPVAL)
• Letter Generation Variable Base Table (GLBVRBL)
• Population Selection Rules Table (GLRSLCT)
• Letter Generation Variable Select Table (GLRVFRM)
• Letter Generation Variable Rules Table (GLRVRBL)
• Third-Party Function Calls Table (GOBFNXR)
• Parameter Group Code Rule Table (GOREQPG)
• Third-Party Function Parameters Table (GORPPRM)
• Third-Party Electronic Controls Table (GORTCTL)
• Voice Response Controls Table (GORVCTL)
• Parameters Table (GORWFPM)
• EDI Standard Code Validation Table (GTVSCOD)
• SEVIS Consular Post Codes Validation Table (GTVSVCP)
• General Menu Repeating Table (GURMENU)
• Banner Business Entity Table (GURMESG)
• Option Menu Repeating Table (GUROPTM)

Other Tables

The Crosswalk Validation Table (GTVSDAX) contains important delivered data. See the Banner
GTVSDAX Handbook for complete details.

Seed data for the FGAC Domain Policy Table (GORFDPL) is documented in the Banner Data
Security Handbook (formerly titled Banner FGAC Handbook).

The Institutional Description Table (GUBINST) must contain at least one row. It is delivered with
example data that you can modify or replace with your own institution’s data.

Normally, you will have no reason to edit the following tables that contain system-required data:

• The General Version Tracking Table (GURVERS), which tracks the version history of the Banner
General product

• The Dynamic Help Table (GUBBHLP), which holds the delivered Dynamic Help for Banner forms,
blocks, and fields.

©2018 Ellucian. Confidential & Proprietary 237

System-Required Data

System-Required Rows

Specific delivered, system-required values are listed in this section, organized alphabetically by
table name.

Even though these are considered system-required values, not all of the values listed here need to
be present in every institution’s Banner database. Many of the tables and values support specific
Banner systems, subsystems, and functions. If your institution does not use those components of
Banner, then the absence of the corresponding data will not cause any problem.

As an example, the FGAC Domain Driver Table Table (GOBFDMN) maintains driver tables for VBS
and PII processing. In the section below, you will see driver tables listed in GOBFDMN for all of the
Banner products. If your institution has not implemented Banner Finance, for example, then the
absence of Finance driver table entries in the GOBFDMN table would not cause any problems.

GLBAPPL - Letter Generation Application Table

Application Description System Code

ALUMNI BANNER Alumni/
Development

A

FINAID Financial Aid
Application

R

WKBOOK Sample Application for
G01C

G

COURTS Banner Courts C

HRAPPL HR Applicant H

HREMPL HR Employee H

WORKBOOK Letter Generation
Workbook

S

STUDENT Student Module S

GENERAL General Module G

RECRUITING BANNER Student
Recruiting Mod.

S

ADMISSIONS BANNER Student
Admissions Mod.

S

HOUSING BANNER Student Housing
Module

S

BANSTU_SAMPLE Student Sample Data
Examples

S

PIN_RESET PIN Reset Notification G

©2018 Ellucian. Confidential & Proprietary 238

System-Required Data

GLBAPPL - Letter Generation Application Table

Application Description System Code

COBRA_APPL Cobra Application H

GLBOBJT Letter Generation Object Base Table

MARRIED Select Married Persons

DIVORCED Select Divorced Persons

SINGLE Select Single Persons

NOT_DEAD Not Dead Rules

WOMEN Select Women

RECR_TERM Recruit Term

MEN Select Men

RCRAPP1-RCRAPP2_JOINS table joins

RECR_COLL Recruit College

RECR_MAJR Recruit Major

RECR_LEVL Recruit Level

PERSON_RECORD person

CURRENT_NAME_ID most accurate name and ID

GLBSLCT - Population Selection Base Table

Application Selection Creator ID Description

FINAID NOVER_NOTPACKAGED FAISMGR not selected - not
packaged

FINAID TEMP FAISUSR Temporary

STUDENT 199510_NEW_FROSH SAISUSR 199510 New Frosh
Registrations

STUDENT 199510_NEW_UG_
FROSH

SAISUSR 199510 New Frosh
Enrollees

ALUMNI CLASS72 ADISUSR Alumni by preferred
class

ALUMNI CLASS86 ADISUSR Alumni by preferred
class

ALUMNI PREF_CLASS ADISUSR Alumni by preferred
class

©2018 Ellucian. Confidential & Proprietary 239

System-Required Data

GLBSLCT - Population Selection Base Table

Application Selection Creator ID Description

ALUMNI PROSPECTS ADISUSR All prospects

ALUMNI PROS_RESEARCH ADISUSR Prospect Research
Population

FINAID PRIORITY_LATE FAISMGR late applicants

FINAID PRIORITY_ONTIME FAISMGR on time applicants

RECRUITING 199301_RECRUITS SAISUSR Selection of 1993
Recruits

FINAID SELECTED-NOTCOMP FAISMGR sel for verif. - not
completed

FINAID DORM FAISMGR Housing Code
Selection

FINAID UMETNEED FAISMGR Need

FINAID UNMET FAISMGR Need

FINAID MANUAL FAISMGR manual pop selection

FINAID ALL_REQ_COMP FAISUSR All Requirements
Complete

FINAID AWARD_LTR FAISPRD Students Needing
Award Letters

FINAID NEEDY_FROM_PA FAISUSR Needy From PA

FINAID NEEDY FAISPRD Students With Large
Gross Need

HREMPL DEDN HRISUSR Employee Dedn List

ALUMNI NEGATIVE_AMOUNT_
DUE

ADISUSR Negative amount due-
membership

ALUMNI FORM_NOT_RECEIVED ADISUSR Matching Gift Form Not
Recvd

ALUMNI GROUPED_GIFTS_IDS ADISUSR IDs with grouped gifts

WKBOOK MEN SAISUSR Select All Men

FINAID TRACK2 FAISMGR Never had a tracking
letter

FINAID TRACK1 FAISMGR Track Letter not sent
since

FINAID AWARD_FLAG FAISMGR Award Letter Flag = ‘Y’

FINAID TRACK_FLAG FAISMGR Track Letter Flag = ‘Y’

©2018 Ellucian. Confidential & Proprietary 240

System-Required Data

GLBSLCT - Population Selection Base Table

Application Selection Creator ID Description

FINAID VA_BENEFITS FAISMGR receiving va benefits

FINAID SS_BENEFITS FAISMGR Receiving SS benefits

STUDENT 199510_NEW_UG_
TRAN

SAISUSR 199510 New Frosh
Enrollees

FINAID CHILD_CARE FAISMGR have dependent child
expenses

FINAID NONCITIZEN FAISMGR not a U.S. citizen

BANSTU_SAMPLE TS_CONTRACTS SAISUSR Students with
Contracts

BANSTU_SAMPLE TS_EXEMPTIONS SAISUSR Students with
Exemptions

FINAID MANUAL FAISUSR Manual

BANSTU_SAMPLE 199610_ENROLLED SAISUSR 199610 enrolled
students

BANSTU_SAMPLE MEN SAISUSR Select Men

WKBOOK 199610_ENROLLED SAISUSR 199610 Enrolled
Students

BANSTU_SAMPLE 199510_NEW_AND_
TRANS

SAISUSR 199510 N & T enrolled
UG

WKBOOK 199610_CURR_STU SAISUSR 199610 Current
Students

FINAID RORSTAT_RECORD FAISMGR has rorstat record in
aid year

BANSTU_SAMPLE 199510_UG_NEW SAISUSR 199510 Ug, New

ADMISSIONS 199610_APPLICANTS SAISUSR Fall 1996 Applicants

FINAID AFDC FAISMGR afdc recipient

FINAID RCRAPP_RECORD FAISMGR Need Analysis Records

FINAID BGRP FAISMGR all students in budget
group

FINAID TGRP FAISMGR all students in track
group

FINAID PGRP FAISMGR all students in pckg
group

FINAID CHILDSUPPORT FAISMGR receive child support

©2018 Ellucian. Confidential & Proprietary 241

System-Required Data

GLBSLCT - Population Selection Base Table

Application Selection Creator ID Description

FINAID CITIZENSHIP FAISMGR citizenship verification

FINAID COMPLETE_DISB_REQ FAISMGR all disb req. complete

FINAID COMPLETE_PCKG_REQ FAISMGR all pckg req. complete

FINAID COMPLETE_TRACKING FAISMGR all requirements
complete

HOUSING HOUSING_
ASSIGNMENTS

SAISUSR Active Housing
Assignments

FINAID MANUAL1 FAISUSR manual1

For all entries listed above, Lock Indicator is N, and Type is null.

GLRAPPL Letter Generation Application Rules Table

ApplicationSeq. No. Line No. Data
Element

Operator Value () AND/OR

ADMISSIONS5 1 SARADAP_
TERM_
CODE_
ENTRY

= &APPLICATION_
 TERM

RECRUITING4 1 SRBRECR_
TERM_
CODE

= &RECRUITING_
 TERM

COURTS 1 1 CDBCASE_
ID

IS NOT
NULL

HRAPPL 1 1 PABAPPL_
PIDM

= SPRIDEN_
PIDM

AND

HRAPPL 2 2 SPRIDEN_
ENTITY_
IND

= P AND

HRAPPL 3 3 SPRIDEN_
CHANGE_
 IND

IS NULL

HREMPL 1 1 PEBEMPL_
PIDM

= SPRIDEN_
PIDM

AND

HREMPL 2 2 SPRIDEN_
ENTITY_
IND

= P AND

HREMPL 3 3 SPRIDEN_IS NULL

©2018 Ellucian. Confidential & Proprietary 242

System-Required Data

GLRAPPL Letter Generation Application Rules Table

ApplicationSeq. No. Line No. Data
Element

Operator Value () AND/OR

CHANGE_
IND

WORKBOOK1 1 SPRIDEN_
CHANGE_
IND

IS NULL AND

WORKBOOK2 2 SPRIDEN_
ENTITY_
IND

= P AND

WORKBOOK3 3 SPBPERS_
DEAD_
IND

IS NULL

GLROBJT Letter Generation Object Rules Table

Object Seq. No. Line No. Data
Element

Operator Value () AND/OR

RECR_
COLL

1 1 SRBRECR_
COLL_
 CODE

= &recr_
coll

MARRIED 1 1 SPBPERS_
MRTL_
 CODE

= M

DIVORCED1 1 SPBPERS_
MRTL_
 CODE

= D

SINGLE 1 1 SPBPERS_
MRTL_
 CODE

= S

NOT_DEAD1 1 SPBPERS_
DEAD_
 IND

IS NULL

WOMEN 1 1 SPBPERS_
SEX

= F

RECR_
COLL

1 1 SRBRECR_
COLL_
CODE

= &recr_
coll

MARRIED 1 1 SPBPERS_
MRTL_
 CODE

= M

©2018 Ellucian. Confidential & Proprietary 243

System-Required Data

GLROBJT Letter Generation Object Rules Table

Object Seq. No. Line No. Data
Element

Operator Value () AND/OR

DIVORCED1 1 SPBPERS_
MRTL_
 CODE

= D

SINGLE 1 1 SPBPERS_
MRTL_
 CODE

= S

NOT_
DEAD

1 1 SPBPERS_
DEAD_
 IND

IS NULL

WOMEN 1 1 SPBPERS_
SEX

= F

RECR_
TERM

1 1 SRBRECR_
TERM_
CODE

= &recr_
term

MEN 1 1 SPBPERS_
SEX

= M

RCRAPP1-
RCRAPP2_
 JOINS

1 1 RCRAPP1_
PIDM

= RCRAPP2_
PIDM

AND

RCRAPP1-
RCRAPP2_
 JOINS

2 2 RCRAPP1_
AIDY_
CODE

= RCRAPP2_
AIDY_
 CODE

AND

RCRAPP1-
RCRAPP2_
JOINS

3 3 RCRAPP1_
INFC_
 CODE

= RCRAPP2_
INFC_
CODE

AND

RCRAPP1-
RCRAPP2_
JOINS

4 4 RCRAPP1_
SEQ_ NO

= RCRAPP2_
SEQ_ NO

RECR_
MAJR

1 1 SRBRECR_
MAJR_
CODE

= &recr_
majr

RECR_
LEVL

1 1 SRBRECR_
LEVL_
 CODE

= &recr_
levl

PERSON_
RECORD

1 1 SPRIDEN_
ENTITY_
IND

= P

©2018 Ellucian. Confidential & Proprietary 244

System-Required Data

GLROBJT Letter Generation Object Rules Table

Object Seq. No. Line No. Data
Element

Operator Value () AND/OR

CURRENT_
 NAME_
ID

1 1 SPRIDEN_
CHANGE_
IND

IS NULL

GLRSFRM - Population Selection Select Table

Application Selection
Code

Select Clause From Clause Order By Group By

ALUMNI CLASS72 APBCONS_
 PIDM

APBCONS

ALUMNI CLASS86 APBCONS_
PIDM

APBCONS

ALUMNI PREF_CLASS APBCONS_
PIDM

APBCONS

ALUMNI PROSPECTS AMRINFO_
PIDM

AMRINFO

ALUMNI PROS_
RESEARCH

AMRPUSR_
 PIDM

AMRPUSR,
APBCONS

RECRUITING 199301_
RECRUITS

SRBRECR_
 PIDM

SRBRECR

FINAID DORM RORSTAT_
PIDM

RORSTAT RCRAPP1

FINAID UMETNEED RORSTAT_
PIDM

RORSTAT RCRAPP1

FINAID UNMET RORSTAT_
PIDM

RORSTAT RCRAPP1

HREMPL DEDN PDRDEDN_
PIDM

PDRDEDN

FINAID ALL_REQ_
COMP

RORSTAT_
PIDM

RORSTAT

FINAID AWARD_LTR RORSTAT_
PIDM

RORSTAT

FINAID NEEDY RORSTAT_
PIDM

RORSTAT

FINAID NEEDY_FROM_
PA

RORSTAT_
PIDM

RORSTAT RCRAPP1

©2018 Ellucian. Confidential & Proprietary 245

System-Required Data

GLRSFRM - Population Selection Select Table

Application Selection
Code

Select Clause From Clause Order By Group By

FINAID AFDC RORSTAT_
PIDM

RORSTAT,
RCRAPP1

FINAID BGRP RORSTAT_
PIDM

RORSTAT

FINAID TGRP RORSTAT_
PIDM

RORSTAT

ALUMNI NEGATIVE_
AMOUNT_DUE

AARMEMB_
PIDM

AARMEMB A

FINAID PGRP RORSTAT_
PIDM

RORSTAT

FINAID CHILDSUPPORT RORSTAT_
PIDM

RORSTAT,
RCRAPP1

FINAID CITIZENSHIP RORSTAT_
PIDM

RORSTAT,
RCRAPP1

FINAID COMPLETE_
DISB_REQ

RORSTAT_
PIDM

RORSTAT

FINAID COMPLETE_
PCKG_REQ

RORSTAT_
PIDM

RORSTAT

FINAID COMPLETE_
TRACKING

RORSTAT_
PIDM

RORSTAT

FINAID NOVER_
NOTPACKAGED

RORSTAT_
PIDM

RORSTAT,
RCRAPP1

FINAID PRIORITY_
LATE

RORSTAT_
PIDM

RORSTAT

FINAID PRIORITY_
ONTIME

RORSTAT_
PIDM

RORSTAT

FINAID SELECTED-
NOTCOMP

RORSTAT_
PIDM

RORSTAT,
RCRAPP1

ALUMNI FORM_NOT_
RECEIVED

AGBMGID_
EMPL_ PIDM

AGBGIFT,
AGBMGID

ALUMNI GROUPED_
GIFTS_IDS

AGRRCPT_
PIDM

AGRRCPT

WKBOOK MEN SPBPERS_
PIDM

SPBPERS

FINAID TRACK2 RORSTAT_
PIDM

RORSTAT,
RRRAREQ

©2018 Ellucian. Confidential & Proprietary 246

System-Required Data

GLRSFRM - Population Selection Select Table

Application Selection
Code

Select Clause From Clause Order By Group By

FINAID TRACK1 RORSTAT_
PIDM

RORSTAT RRRAREQ SPRIDEN
GURMAIL A

FINAID AWARD_FLAG RORSTAT_
PIDM

RORSTAT SPRIDEN

FINAID TRACK_FLAG RORSTAT_
PIDM

RORSTAT SPRIDEN

FINAID VA_BENEFITS RORSTAT_
PIDM

RORSTAT,
RCRAPP1

FINAID SS_BENEFITS RORSTAT_
PIDM

RORSTAT RCRAPP1

STUDENT 199510_NEW_
FROSH

SGBSTDN_
PIDM

SGBSTDN A

STUDENT 199510_NEW_
UG_FROSH

SGBSTDN_
PIDM

SGBSTDN A

STUDENT 199510_NEW_
UG_TRAN

SGBSTDN_
PIDM

SGBSTDN A

FINAID CHILD_CARE RCRAPP3_
PIDM

RCRAPP1 RCRAPP3

FINAID NONCITIZEN RCRAPP1_
PIDM

RCRAPP1

BANSTU_
SAMPLE

TS_
EXEMPTIONS

TBBESTU_
PIDM

TBBESTU

BANSTU_
SAMPLE

199610_
ENROLLED

SFBETRM_
PIDM

SFBETRM

BANSTU_
SAMPLE

MEN SPBPERS_
PIDM

SPBPERS

WKBOOK 199610_
ENROLLED

SFBETRM_
PIDM

SFBETRM

BANSTU_
SAMPLE

199510_NEW_
AND_TRANS

SGBSTDN_
PIDM

SGBSTDN A

WKBOOK 199610_CURR_
STU

SGBSTDN_
PIDM

SGBSTDN A

FINAID RORSTAT_
RECORD

RORSTAT_
PIDM

RORSTAT SPRIDEN

BANSTU_
SAMPLE

199510_UG_
NEW

SGBSTDN_
PIDM

SGBSTDN A

©2018 Ellucian. Confidential & Proprietary 247

System-Required Data

GLRSFRM - Population Selection Select Table

Application Selection
Code

Select Clause From Clause Order By Group By

ADMISSIONS 199610_
APPLICANTS

SARADAP_
PIDM

SARADAP

FINAID RCRAPP_
RECORD

RORSTAT_
PIDM

RCRAPP1 RORSTAT

HOUSING HOUSING_
ASSIGNMENTS

SLRRASG_
PIDM

SLRRASG,
STVASCD

GOBDIRO Directory Options Rule Table

Directory Code Directory Type Item Type Sequence Number

NAME A N 1

ADDR_PR A A 2

TELE_PR A T 3

ADDR_CP S A 4

TELE_CP S T 5

ADDR_OF E A 6

TELE_OF E T 7

TELE_FAX A T 8

DEPT E N 9

GRD_YEAR S N 10

COLLEGE S N 11

TITLE E N 12

EMAIL A N 13

MAIDEN D N 14

ADDR_HO A A 15

TELE_HO A T 16

ADDR_BU A A 17

TELE_BU A T 18

CLASS_YR D N 19

PR_COLL D N 20

For all entries above, Included in Directory is N, Display in Directory is N, and Default Indicator
is N.

©2018 Ellucian. Confidential & Proprietary 248

System-Required Data

GOBFDMN - FGAC Domain Driver Table Table

Domain Code Table Name Type PII Column Name

TB_ACCOUNT_PII TBRACCD PII TBRACCD_PIDM

FB_CUSTOMER_PII FTVCUST PII FTVCUST_PIDM

FB_EMPLOYEE_PII FCBEMPL PII FCBEMPL_PIDM

FB_VENDOR_PII FTVVEND PII FTVVEND_PIDM

FB_MANAGER_PII FTVFMGR PII FTVFMGR_FMGR_
CODE_PIDM

FB_AGENCY_PII FTVAGCY PII FTVAGCY_AGCY_
CODE_PIDM

GB_FGACACCESS_VBS GOBFGAC VBS

GB_FGAC_PREDICATE_
VBS

GORFPRD VBS

GB_INTERNATIONAL_
VBS

GOBINTL VBS

GB_SPRADDR_VBS SPRADDR VBS

GB_SPRMEDI_VBS SPRMEDI VBS

GB_SPRTELE_VBS SPRTELE VBS

PB_APPLICANT_PII PABAPPL PII PABAPPL_PIDM

PB_BENEFITS_PII PDRBENE PII PDRBENE_PIDM

PB_COBRA_PII PCBPERS PII PCBPERS_PIDM

RB_FINAID_PII RORSTAT PII RORSTAT_PIDM

SB_ADMISSIONS_PII SARADAP PII SARADAP_PIDM

SB_FACULTY_PII SIBINST PII SIBINST_PIDM

SB_HOUSING_PII SLBRMAP PII SLBRMAP_PIDM

SB_GENSTUDENT_PII SGBSTDN PII SGBSTDN_PIDM

SB_RECRUIT_PII SRBRECR PII SRBRECR_PIDM

SB_REGISTRATION_
PII

SFBETRM PII SFBETRM_PIDM

SB_TRANSFER_PII SHRTTRM PII SHRTTRM_PIDM

AB_CONSTITUENT_
PII

APBCONS PII APBCONS_PIDM

AB_ORG_PII AOBORGN PII AOBORGN_PIDM

SB_RECRUIT_VBS SRBRECR VBS

©2018 Ellucian. Confidential & Proprietary 249

System-Required Data

GOBFDMN - FGAC Domain Driver Table Table

Domain Code Table Name Type PII Column Name

PB_EMPLOYMENT_PII PEBEMPL PII PEBEMPL_PIDM

SB_LEARNER_VBS SGBSTDN VBS

SB_CATALOG_VBS SCBCRSE VBS

SB_SCHEDULE_VBS SSBSECT VBS

RB_FINAID_VBS RORSTAT VBS

RB_FINAID_STUDENT_
VBS

RORSTAT VBS

SB_CURRICULUM_VBS SORLCUR VBS

SB_FIELDOFSTUDY_
VBS

SORLFOS VBS

SB_ADMISSIONS_VBS SARADAP VBS

SB_TESTCODES_VBS STVTESC VBS

SB_TESTSCORE_VBS SORTEST VBS

SB_OTHERGPA_
CODES_VBS

STVGPAT VBS

SB_OTHERGPA_VBS SORGPAT VBS

SB_OTHERGPA_
STUDENT_VBS

SORGPAT VBS

SB_TESTSCORE_
STUDENT_VBS

SORTEST VBS

For all entries above, Enable PII Indicator is delivered with the value N.

GOBFDTP - FGAC Domain Type Rule Table

Domain Type Code Predicate Indicator

PII N

VBS Y

GOBFEOB

Objects Excluded from FGAC Processing Rules Table

©2018 Ellucian. Confidential & Proprietary 250

System-Required Data

This table lists objects that bypass FGAC rules. Objects listed in GOBFEOB have full access to data
regardless of VBS or PII rules that might otherwise apply. Following is the complete list of objects
included in seed data for GOBFEOB, organized alphabetically.

AAPACKN, AAPADJS, AAPCARD, AAPFEED, AAPREMD, AAPRNEW, AAPSTAT, ADPACCT,
 ADPCFAE, ADPEXPD, ADPFEED, ADPPFED, ADPVSER, AFPCAMR, AFPDONR,
 AFPSOLA, AFPSOLB, AFPSOLC, AFPTELF, AGPACCT, AGPACKN, AGPACKR,
 AGPADJS, AGPALMP, AGPCASH, AGPDCGL, AGPGANL, AGPGCOM, AGPLYSY,
 AGPMATA, AGPMATC, AGPMATF, AGPMATG, AGPMATS, AGPPACT, AGPPOUT,
 AGPREM1, AGPREM2, AGPSCTA, AGPTLMK, ALPMAIL, ALPMSEL, APAPPFL,
 APPAPFL, APPCEN1, APPCEN2, APPCLST, APPCONS, APPCUPD, APPDCAR,
 APPDCLB, APPDCLS, APPDEXT, APPDFLS, APPDPRC, APPSTDI, ASPSOLA,
 ASPSOLB, ASPSORL, AXPMATG
BWPREDIR
CRQC3000
FAB1099, FABCHK1, FABCHKA, FABCHKD, FABCHKP, FABCHKR, FABCHKS, FABMATC,
 FAM1099, FAPCARD, FAPCDIR, FAPDIRD, FAPINVT, FAPTREG, FARAAGE,
 FARBBAL, FARBREC, FARCHKR, FARCSHR, FARDIRD, FARIAGE, FARINVA,
 FARINVS, FARIREC, FAROINV, FARVALP, FARVHST, FARVNUM, FARWHLD,
 FARWHLY, FAT1099, FATCHKS, FBRAPPD, FBRAPPR, FBRBDBB, FBRBDDS,
 FBRBDRL, FBRFEED, FBRMCHG, FBRWKSH, FCBBILL, FCBEQPT, FCBINVT,
 FCBLABR, FCBMATL, FCRBDTR, FCRSCHD, FCRVARA, FEPOEXT, FFPDEPR,
 FFPOEXT, FFRAGRP, FFRDTGA, FFRDTGT, FFRMAST, FFRPROC, FFRPROP,
 FGPGEXT, FGRACCI, FGRACTG, FGRACTH, FGRACTV, FGRAGYH, FGRBAVL,
 FGRBDRL, FGRBDSC, FGRBIEX, FGRBLSH, FGRCASH, FGRCBSR, FGRCGBA,
 FGRCGBS, FGRCHFB, FGRCHNA, FGRCLOP, FGRCOBS, FGRCREF, FGRCSBA,
 FGRCSCF, FGRCSRE, FGRCSRP, FGRCSSR, FGRCTRL, FGRCUNA, FGRENRL,
 FGRFAAC, FGRFBAL, FGRFITD, FGRFNDH, FGRFPSN, FGRGLEX, FGRGLRL,
 FGRGLTA, FGRIDOC, FGRJVLR, FGRLOCH, FGRODTA, FGROPNE, FGRORGH,
 FGRPDTA, FGRPRAP, FGRPRAR, FGRPRGH, FGRREOB, FGRREOC, FGRTAXR,
 FGRTBAL, FGRTBEX, FGRTOFR, FGRTRNH, FGRTRNI, FGRTRNR, FIRBVAL,
 FIRDIST, FIRLINK, FIRPVAL, FIRRDST, FIRUNIT, FNPGAIN, FNPSPND,
 FNPUNTZ, FNRHIST, FNRPRNC, FNRSPNC, FOIIDEN, FORAPPL, FPABIDD,
 FPACORD, FPAPORD, FPARQST, FPPPOBC, FPRBEVL, FPRDELV, FPROPNP,
 FPROPNR, FPRPURA, FPRRCDL, FPRRCST, FPRVCAT, FPRVVOL, FPTBIDD,
 FPTPORD, FPTRQST, FRPBINF, FRPGINF, FRPMESG, FRR134B, FRR269R,
 FRR270B, FRR272B, FRR272R, FRRABUD, FRRAGES, FRRAGYH, FRRBDEX,
 FRRBEXC, FRRBILL, FRRBREV, FRRBUDG, FRRCNSF, FRREVNG, FRREVNP,
 FRRFEXC, FRRGBFY, FRRGENB, FRRGENR, FRRGITD, FRRGPFY, FRRGRNT,
 FRRGRPT, FRRGRTN, FRRINDC, FRRINVS, FRRTRNR, FSRDTLG, FSRINVL,
 FSRISST, FSRLWSR, FSROPNR, FSROUTP, FSRPHYR, FSRPICK, FSRPIDR,
 FSRPIWS, FSRPUTL, FSRSTEX, FSRSUPC, FUPLOAD, FURAPAY, FURFEED
GJRRPTS, GLBDATA, GLBLSEL, GLBPARM, GLOLETT, GLRLETR, GOAEACC, GOAFPII,
 GOAMTCH, GORPGEO, GORSEVE, GORSGEO, GPPADDR, GUASYST, GUAVRFY,
 GUIALTI, GUPDELT, GURDETL, GURHELP, GURINSO, GURPDED, GURTABL,
 GURTEXT, GURTPAC
HWPREDIR, HWSRCTLG, HWSRSCHD
IRRKAWD, IRRKTRK, IRRKTRN, ISRKADM, ISRKBIL, ISRKCRS, ISRKGRD, ISRKSCH,
 ISRKTRN
NBPBROL, NBPBUDM, NBPENCB, NBPMASS, NBPSPEX, NBPSPUP, NBRBWRK, NBRPCLS,
 NBRPINC, NBRPOSN, NBRPSTA, NHPFIN1, NHPFIN2, NHRBDST, NHRDIST,
 NHRECRT, NHREDST, NHRSDST, NOPEAMA, NORAPTR
PARAPPL, PARMAPP, PARREQS, PCRCORT, PCRLTRS, PCRNOTF, PCRRATE, PDP1042,
 PDPBDMC, PDPCFLX, PDPF496, PDPFLEX, PDPLIFE, PDPMR87, PDPPERS,
 PDRBCOV, PDRBFDN, PDRBLST, PDRFLEX, PDRFLXU, PDRFUPT, PDRLIFE,
 PEP1042, PEPAEXT, PEPCSAL, PEPEDEX, PEPFACL, PEPPCRE, PERAPND,

©2018 Ellucian. Confidential & Proprietary 251

System-Required Data

 PERCAF7, PEREO11, PEREO1D, PEREO41, PEREO4D, PEREO51, PEREO5D,
 PEREO61, PEREO62, PEREO6D, PERFACL, PERHIRE, PERLEAV, PERORGC,
 PEROSHA, PERPAPP, PERPGAN, PERPHIR, PERPTER, PERREVW, PERROEC,
 PERTERM, PERTTTT, PERUTAN, PERV100, PERWFAN, PHPBOND, PHPBREC,
 PHPCALC, PHPCDIR, PHPCHEK, PHPCHKL, PHPDIRD, PHPDOCM, PHPFEXP,
 PHPLEAV, PHPMTIM, PHPPROF, PHPRETO, PHPTIME, PHPUPDT, PHRCDST,
 PHRCISS, PHRCOST, PHRDCON, PHRDERR, PHRDIRD, PHRDREG, PHRDSTT,
 PHRFACE, PHRHOUR, PHRLGST, PHRLRAR, PHRORGT, PHRPREG, PHRROST,
 PHRSTCA, PHRTMSH, PHRTREG, PORADUT, PORAUDT, PORPPFL, PPRSINV,
 PXP1099, PXPMT42, PXPMTT4, PXPMTTA, PXPMTTN, PXPW2MM, PXPW2MP,
 PXPW2TP, PXR1042, PXR1099, PXRASCD, PXRLIST, PXRP941, PXRROEC,
 PXRT4AC, PXRT4AN, PXRT4CN, PXRTDEP, PXRW2PR, PXRW2US
RBRABUD, RBRBCMP, RCBCT05, RCBCT06, RCBTP05, RCBTP06, RCMATCH, RCPDTMP,
 RCPIMFM, RCPMTCH, RCRTP03, RCRTP04, RCRTP05, RCRTP06, REBCD00,
 REBCD01, REBCD02, REBCD03, REBCD04, REBCD05, REBCD06, RERCALX,
 RERCRCR, REREX03, REREX04, REREX05, RERFI00, RERFI01, RERFI02,
 RERFI03, RERFI04, RERFI05, RERFI06, RERIM03, RERIM04, RERIM05,
 RERIMEX, RERIS00, RERIS01, RERIS02, RERIS03, RERIS04, RERIS05,
 RERIS06, RERPELL, RERPL01, RERPL02, RERPL03, RERPL04, RERPL05,
 RERPR00, RERPR01, RERPR02, RERPR03, RERPR04, RERPR05, RESDTMP,
 RFRABAL, RFRBUDG, RFRFUND, RFRSBAL, RHRCOMM, RHRFATR, RHRTRAN,
 RJRAUTH, RJRDPPR, RJRLOAD, RJRPAYE, RJRSEEC, RLRLETR, RLRLOGG,
 RNEIN00, RNEIN01, RNEIN02, RNEIN03, RNEIN04, RNEIN05, RNEIN06,
 RNRPINI, RNRTMAC, RNRTMNE, RNRTMNI, RNRVRFY, ROBBGRP, ROESAPR,
 ROOAUTO, ROOGSQL, ROPROLL, ROPSAPR, RORALOG, RORAPLT, RORBPST,
 RORCALC, RORFS00, RORFS01, RORFS02, RORFS03, RORFS04, RORGRDE,
 RORREGS, RORUSER, RPBDDRV, RPBLMIA, RPBLMID, RPBLMIE, RPBPDRV,
 RPBVDRV, RPBVLDT, RPEDISB, RPEPCKG, RPEPELL, RPEPINT, RPRADSB,
 RPRAWDB, RPRAWRD, RPRCNCL, RPRCP01, RPRCP02, RPRCP03, RPRCP04,
 RPRCP05, RPRDDUP, RPRDLLC, RPRDLLR, RPRDLPM, RPRDSPT, RPRDU00,
 RPRDU01, RPRDU02, RPRDU03, RPRDU04, RPRDU05, RPREFTL, RPREFTP,
 RPRELAP, RPRELAX, RPRELCT, RPRELRU, RPRHDRL, RPRLNAG, RPRLNEX,
 RPRLODE, RPRLORC, RPRLORE, RPRLSUM, RPRPNPT, RPRRECD, RPRRECN,
 RPRSAWD, RPRSBPR, RPRSTCR, RPRTIVC, RPRTIVI, RPRTIVR, RPRVABN,
 RRRAREQ, RRREXIT, RRRTRAN, RSRDSCP, RSRENRL, RSRPCOL
SADA3202, SADA3203, SADA3204, SADA3205, SADA3206, SADAFLEX, SADAPRNT,
 SAPADMS, SAPAMAL, SAR189U, SARACTM, SARADMS, SARAMAL, SARAMAS,
 SARAMCV, SARAMDP, SARAMXF, SARBDSN, SARDCBT, SARDCSN, SAREMAL,
 SARETBL, SARETMT, SARETPG, SARRATE, SATAMCS, SCRBULT, SCROIMS,
 SCRRIMS, SCTC1500, SCTC2000, SCTC3000, SCTD0600, SCTH1000, SERADAL,
 SERCBREC, SERCCRC, SERLOAD, SERPSRC, SERSAREC, SERSBREC, SERSDREC,
 SERSEREC, SERSIREC, SERSMREC, SERSPREC, SERSVRC, SERSXREC, SERXBREC,
 SERXCREC, SERXEREC, SERXFREC, SFPAGRD, SFPBLCK, SFPCREQ, SFPENRL,
 SFPFAUD, SFPFREQ, SFPREGS, SFPWAIT, SFRENRL, SFRFASC, SFRFEES,
 SFRHCNT, SFRLINK, SFRNOWD, SFRNSLC, SFRPINI, SFRRGAM, SFRRNOP,
 SFRSCHD, SFRSLST, SFRSSCR, SFRTMST, SFRWDRL, SGPBLCK, SGPCOOP,
 SGPHOLD, SGPSTDN, SGRCHRT, SGRKNOW, SGRSTDN, SGRVETN, SHPTAEQ,
 SHPTRTC, SHRASTD, SHRCATT, SHRCGPA, SHRCIPC, SHRCOMM, SHRCONV,
 SHRDEGS, SHRDEGV, SHREDII, SHREDIP, SHREDIR, SHREDIY, SHRETRP,
 SHRGPAC, SHRGRDE, SHRIACT, SHRIAGE, SHRICIP, SHRIETH, SHRIGRS,
 SHRIPDS, SHRIQUS, SHRIRES, SHRPREV, SHRROLL, SHRRPTS, SHRTAEQ,
 SHRTECA, SHRTPOP, SHRTRTC, SHRTYPE, SIPASGN, SIRASGQ, SIRCTAL,
 SIRTRAL, SLPHOUS, SLRBACS, SLRDADD, SLRFASM, SLRHLST, SLRROLL,
 SLRSCHD, SLRSCHE, SMPCPRG, SMRBCMP, SMRCMPL, SMRCRLT, SMRRLST,
 SOAIDEN, SOPAPPT, SOPLCCV, SOPLCPG, SOPSATS, SORAINF, SORCPLN,
 SOREMAL, SORHSRP, SORLCHG, SORPCSM, SORPGEO, SORSBSM, SORSGEO,
 SPRPDIR, SRREMAL, SRRENRH, SRRENRL, SRRINQR, SRRPREL, SRRSRIN,

©2018 Ellucian. Confidential & Proprietary 252

System-Required Data

 SRTLOAD, SRTPURG, SSPMFEE, SSPRDEF, SSPROLL, SSPSCHD, SSRATSQ,
 SSRRESV, SSRROLL, SSRSCMT, SSRSCPR, SSRSCRM, SSRSCUP, SSRSECT,
 SSRTALY, SSRUSEC, SURDELT, SURLOAD
TFRBILL, TFRDETL, TFRLATE, TFRRFND, TGPBILL, TGPHOLD, TGRAGES, TGRAPPL,
 TGRCDEL, TGRCLOS, TGRCOLC, TGRCSHR, TGRDELI, TGRDETC, TGRFEED,
 TGRMISC, TGRRCON, TGRRCPT, TGRUNAP, TRRAGES, TRRAPPL, TRRCOLL,
 TRRRCON, TRRUNAP, TRRUNPL, TSP1098, TSPISTA, TSPISTT, TSR1098,
 TSRBTOT, TSRCBIL, TSRDETL, TSRLATE, TSRLBOX, TSRRFND, TSRROLL,
 TSRSSUM, TSRTBIL, TSRTRAF, TSRTSUM, TVPREQA, TVRCRED

GORCCOL

Capture Table Capture Columns

GOREMAL GOREMAL_EMAIL_ADDRESS

GOREMAL_PREFERRED_IND

GOREMAL_STATUS_IND

GORIROL GORIROL_ROLE

GORIROL_ROLE_GROUP

SPBPERS SPBPERS_BIRTH_DATE

SPBPERS_LEGAL_NAME

SPBPERS_NAME_PREFIX

SPBPERS_NAME_SUFFIX

SPBPERS_PREF_FIRST_NAME

SPBPERS_SEX

SPBPERS_SSN

SPRADDR SPRADDR_ATYP_CODE

SPRADDR_CITY

SPRADDR_CNTY_CODE

SPRADDR_NATN_CODE

SPRADDR_STATUS_IND

SPRADDR_STAT_CODE

SPRADDR_STREET_LINE1

SPRADDR_STREET_LINE2

SPRADDR_STREET_LINE3

SPRADDR_ZIP

SPRIDEN SPRIDEN_CHANGE_IND

©2018 Ellucian. Confidential & Proprietary 253

System-Required Data

Capture Table Capture Columns
SPRIDEN_ENTITY_IND

SPRIDEN_FIRST_NAME

SPRIDEN_LAST_NAME

SPRIDEN_MI

SPRTELE SPRTELE_PHONE_AREA

SPRTELE_PHONE_EXT

SPRTELE_PHONE_NUMBER

GORCRUL

Capture Table Capture Rule

SPRIDEN SPRIDEN_CHANGE_IND is NULL
 SPRIDEN_ENTITY_IND IN (‘P’)

GORCMDD - Common Matching Data Dictionary Table

Table Column Element Max.
Lnth.

Override
Lnth.

Allow
Neg. Lnth.

On-line
Ind.

Req.
Element

SPRIDEN SPRIDEN_
ID

ID 9 Y Y Y N

SPRIDEN SPRIDEN_
SEARCH_
LAST_
NAME

Last
Name/
Non-
Person
Name

60 Y N Y Y

SPRIDEN SPRIDEN_
SEARCH_
FIRST_
NAME

First Name 15 Y N Y N

SPRIDEN SPRIDEN_
SEARCH_
MI

Middle
Name

15 Y N Y N

SPRADDR SPRADDR_
STREET_
LINE1

Street Line
1

30 Y N Y N

SPRADDR SPRADDR_
CITY

City 20 Y N Y N

©2018 Ellucian. Confidential & Proprietary 254

System-Required Data

GORCMDD - Common Matching Data Dictionary Table

Table Column Element Max.
Lnth.

Override
Lnth.

Allow
Neg. Lnth.

On-line
Ind.

Req.
Element

SPRADDR SPRADDR_
STAT_
CODE

State/
Province

3 N N Y N

SPRADDR SPRADDR_
ZIP

Zip/Postal
Code

10 Y N Y N

SPRADDR SPRADDR_
NATN_
CODE

Nation 5 N N Y N

SPRADDR SPRADDR_
CNTY_
CODE

County 5 N N Y N

SPRTELE SPRTELE_
PHONE_
AREA

Telephone
Area Code

3 Y N Y N

SPRTELE SPRTELE_
PHONE_
NUMBER

Telephone
Number

7 Y N Y N

SPBPERS SPBPERS_
SSN

SSN/SIN/
TIN

9 Y Y Y N

SPBPERS SPBPERS_
BIRTH_
DAY

Date of
Birthday

2 N N Y N

SPBPERS SPBPERS_
BIRTH_
MON

Date
of Birth
Month

2 N N Y N

SPBPERS SPBPERS_
BIRTH_
YEAR

Date of
Birth Year

4 N N Y N

SPBPERS SPBPERS_
SEX

Gender 1 N N Y N

GOREMAL GOREMAL_
EMAIL_
 ADDRESS

Email 90 Y N Y N

©2018 Ellucian. Confidential & Proprietary 255

System-Required Data

GORCTAB

Capture Table

GOREMAL

GORIROL

SPBPERS

SPRADDR

SPRIDEN

SPRTELE

GORDLUP Add-In Data Lookup Repeating Table

Lookup
Name

Lookup
Description

Menu Seq.
#

Position
Control Ind.

HR Ind. Finance
Ind.

Load
Function

F_FUND Fund Code
Lookup

1 N N Y BANINST1.FBKD2SS.
P_GET_FUND_LOOKUP

G_ORGN Organization
Code
Lookup

2 Y Y Y BANINST1.GOKDSSB.
P_GET_ORGN_LOOKUP

F_PROG Program
Code
Lookup

4 N N Y BANINST1.FBKD2SS.
P_GET_PROG_LOOKUP

F_ACCT Account
Code
Lookup

3 N N Y BANINST1.FBKD2SS.
P_GET_ACCT_LOOKUP

F_LOCN Location
Code
Lookup

6 N N Y BANINST1.FBKD2SS.
P_GET_LOCN_LOOKUP

F_ACTV Activity
Code
Lookup

5 N N Y BANINST1.FBKD2SS.
P_GET_ACTV_LOOKUP

N_POSN Position
Lookup

7 N Y Y BANINST1.NBKD2SB.
P_LOOKUP_POSN

N_FISCYR Fiscal Year
Lookup

8 N Y Y BANINST1.NBKD2SB.
P_LOOKUP_FISCYR

N_ECLS Employee
Class
Lookup

9 N Y Y BANINST1.NBKD2SB.
P_LOOKUP_ECLS

©2018 Ellucian. Confidential & Proprietary 256

System-Required Data

GORDLUP Add-In Data Lookup Repeating Table

Lookup
Name

Lookup
Description

Menu Seq.
#

Position
Control Ind.

HR Ind. Finance
Ind.

Load
Function

N_OBUD Budget ID
Lookup

10 N N Y BANINST1.NBKD2SB.
P_LOOKUP_OBUD

N_OBPH Budget
Phase
Lookup

11 N N Y BANINST1.NBKD2SB.
P_LOOKUP_OBPH

N_EARN Earnings
Lookup

12 N Y N BANINST1.NBKD2SB.
P_LOOKUP_EARN

N_BDCA Benefit/
Deduction
Lookup

13 N Y N BANINST1.NBKD2SB.
P_LOOKUP_BDCA

For all entries above, Add-In Code is BUDGET, Financial Aid Indicator is N, Billcsh Indicator is
N, Alumni Indicator is N, Student Indicator is N.

GORDMCL Display Mask Column Rules Table

Block Name Column Name Data Type Data Length

GOVCMRT_MATCH MATCH_BIRTH_DATE D 12

GOVCMRT_MATCH MATCH_CITY_STATE_
ZIP

C 30

GOVCMRT_MATCH MATCH_COUNTY_
COUNTRY

C 30

GOVCMRT_MATCH MATCH_EMAIL C 30

GOVCMRT_MATCH MATCH_ID C 9

GOVCMRT_MATCH MATCH_NAME C 99

GOVCMRT_MATCH MATCH_PHONE C 30

GOVCMRT_MATCH MATCH_SEX C 30

GOVCMRT_MATCH MATCH_SSN C 9

GOVCMRT_MATCH MATCH_STREET_LINE1 C 30

GOVCMRT_MATCH MATCH_STREET_LINE2 C 30

GOVCMRT_MATCH MATCH_STREET_LINE3 C 30

GOVCMRT_SUSPENSE MATCH_BIRTH_DATE D 12

GOVCMRT_SUSPENSE MATCH_CITY C 30

GOVCMRT_SUSPENSE MATCH_EMAIL C 30

GOVCMRT_SUSPENSE MATCH_ID C 9

©2018 Ellucian. Confidential & Proprietary 257

System-Required Data

GORDMCL Display Mask Column Rules Table

Block Name Column Name Data Type Data Length

GOVCMRT_SUSPENSE MATCH_NAME C 99

GOVCMRT_SUSPENSE MATCH_NATN_CODE C 30

GOVCMRT_SUSPENSE MATCH_PHONE C 30

GOVCMRT_SUSPENSE MATCH_SEX C 30

GOVCMRT_SUSPENSE MATCH_SSN C 9

GOVCMRT_SUSPENSE MATCH_STATE C 3

GOVCMRT_SUSPENSE MATCH_STREET_LINE1 C 30

GOVCMRT_SUSPENSE MATCH_ZIP C 9

For all entries above, Display Object is GOAMTCH, Query Column is null, and Numeric Precision
is null.

GORDPRP - Step Property Repeating Table

Code Value Description

REQUIRED TRUE TRUE

REQUIRED FALSE FALSE

PICTURE WIZARD_FUND Wizard with Fund

PICTURE WIZARD_BOOK Wizard holding Book

PICTURE WIZARD_ORGN Wizard with Organization

MULTISELECT TRUE TRUE

MULTISELECT FALSE FALSE

FINDDISPLAYED TRUE TRUE

FINDDISPLAYED FALSE FALSE

PICTURE WIZARD_QUESTION Wizard with question marks

PICTURE WIZARD_EXCLAM Wizard with exclamation points

PICTURE WIZARD_ACCT Wizard with Account

PICTURE WIZARD_PROG Wizard with Program

PICTURE WIZARD_LOCN Wizard with Location

PICTURE WIZARD_ACTV Wizard with Activity

PICTURE WIZARD_FLAG Wizard holding a Finish Flag

PICTURE WIZARD_CALENDAR Wizard holding a calendar

©2018 Ellucian. Confidential & Proprietary 258

System-Required Data

GORDPRP - Step Property Repeating Table

Code Value Description

PICTURE WIZARD_CHART Wizard behind a chart

PICTURE WIZARD_BLOCK Wizard with stack of blocks

PICTURE WIZARD_AMOUNT Wizard with money bags

PICTURE WIZARD_EXCEL Wizard holding spreadsheets

GORDSTE - Wizard Step Repeating Table

Add-In Code Wizard Name Step Name Step Type

BUDGET DOWNLOAD F_ACCT_FBBBLIN ONEWIN

BUDGET DOWNLOAD F_ACCT_FGBOPAL ONEWIN

BUDGET DOWNLOAD F_ACCT_FRRGRNL ONEWIN

BUDGET DOWNLOAD F_ACTV_FBBBLIN ONEWIN

BUDGET DOWNLOAD F_ACTV_FGBOPAL ONEWIN

BUDGET DOWNLOAD F_ACTV_FRRGRNL ONEWIN

BUDGET DOWNLOAD F_AMTTYPE_FBBBLIN ONEWIN

BUDGET DOWNLOAD F_AMTTYPE_FGBOPAL ONEWIN

BUDGET DOWNLOAD F_AMTTYPE_FRRGRNL ONEWIN

BUDGET DOWNLOAD F_BUDGETDEV OPTION

BUDGET DOWNLOAD F_BUDGID ONEWIN

BUDGET DOWNLOAD F_BUDGPH ONEWIN

BUDGET DOWNLOAD F_CMT_TYPE OPTION

BUDGET DOWNLOAD F_COAS ONEWIN

BUDGET DOWNLOAD F_FISCPERIOD ONEWIN

BUDGET DOWNLOAD F_FISCYEAR ONEWIN

BUDGET DOWNLOAD F_FUND_FBBBLIN ONEWIN

BUDGET DOWNLOAD F_FUND_FGBOPAL ONEWIN

BUDGET DOWNLOAD F_FUND_FRRGRNL ONEWIN

BUDGET DOWNLOAD F_GRCODE ONEWIN

BUDGET DOWNLOAD F_GRPERIOD ONEWIN

BUDGET DOWNLOAD F_GRYEAR ONEWIN

BUDGET DOWNLOAD F_LOCN_FBBBLIN ONEWIN

©2018 Ellucian. Confidential & Proprietary 259

System-Required Data

GORDSTE - Wizard Step Repeating Table

Add-In Code Wizard Name Step Name Step Type

BUDGET DOWNLOAD F_LOCN_FGBOPAL ONEWIN

BUDGET DOWNLOAD F_LOCN_FRRGRNL ONEWIN

BUDGET DOWNLOAD F_ORGN_FBBBLIN ONEWIN

BUDGET DOWNLOAD F_ORGN_FGBOPAL ONEWIN

BUDGET DOWNLOAD F_ORGN_FRRGRNL ONEWIN

BUDGET DOWNLOAD F_PROG_FBBBLIN ONEWIN

BUDGET DOWNLOAD F_PROG_FGBOPAL ONEWIN

BUDGET DOWNLOAD F_PROG_FRRGRNL ONEWIN

BUDGET DOWNLOAD F_REQ_COMPLETE TEXT

BUDGET DOWNLOAD G_TABLE_NAME OPTION

BUDGET DOWNLOAD N_BUDGID ONEWIN

BUDGET DOWNLOAD N_BUDGPH ONEWIN

BUDGET DOWNLOAD N_COAS ONEWIN

BUDGET DOWNLOAD N_ECLS ONEWIN

BUDGET DOWNLOAD N_FISCYR ONEWIN

BUDGET DOWNLOAD N_JOBS OPTION

BUDGET DOWNLOAD N_JOBS_COAS ONEWIN

BUDGET DOWNLOAD N_JOBS_COLS TWOWIN

BUDGET DOWNLOAD N_JOBS_DATE FREEFORMAT

BUDGET DOWNLOAD N_JOBS_INFO OPTION

BUDGET DOWNLOAD N_ORGN ONEWIN

BUDGET DOWNLOAD N_SOURCE OPTION

BUDGET UPLOAD F_UPLOAD_BOOK WKSHEET

BUDGET UPLOAD F_UPLOAD_BUDGID ONEWIN

BUDGET UPLOAD F_UPLOAD_COAS ONEWIN

BUDGET UPLOAD F_UPLOAD_FINISH TEXT

BUDGET UPLOAD F_UPLOAD_HEADERS ONEWIN

BUDGET UPLOAD F_UPLOAD_MAPPING COLUMNMAP

BUDGET UPLOAD F_UPLOAD_MAPPING_
DUR

COLUMNMAP

©2018 Ellucian. Confidential & Proprietary 260

System-Required Data

GORDSTE - Wizard Step Repeating Table

Add-In Code Wizard Name Step Name Step Type

BUDGET UPLOAD F_UPLOAD_PERM OPTION

BUDGET UPLOAD F_UPLOAD_PHASE ONEWIN

BUDGET UPLOAD F_UPLOAD_SEQNO TEXT

BUDGET UPLOAD G_UPLOAD_TABLE OPTION

BUDGET UPLOAD N_UPLD_BUDGID ONEWIN

BUDGET UPLOAD N_UPLD_BUDGPH ONEWIN

BUDGET UPLOAD N_UPLD_COAS ONEWIN

BUDGET UPLOAD N_UPLD_FINISH TEXT

BUDGET UPLOAD N_UPLD_FISCYR ONEWIN

BUDGET UPLOAD N_UPLD_FTOT_BOOK WKSHEET

BUDGET UPLOAD N_UPLD_FTOT_MAP COLUMNMAP

BUDGET UPLOAD N_UPLD_HDERS_
WARNING

TEXT

BUDGET UPLOAD N_UPLD_PLBD_BOOK WKSHEET

BUDGET UPLOAD N_UPLD_PLBD_MAP COLUMNMAP

BUDGET UPLOAD N_UPLD_PLBD_MAP_
NOFIN

COLUMNMAP

BUDGET UPLOAD N_UPLD_PTOT_BOOK WKSHEET

BUDGET UPLOAD N_UPLD_PTOT_MAP COLUMNMAP

BUDGET UPLOAD N_UPLD_RTOT_BOOK WKSHEET

BUDGET UPLOAD N_UPLD_RTOT_MAP COLUMNMAP

BUDGET VALIDATION F_VAL_BOOK WKSHEET

BUDGET VALIDATION F_VAL_BUDGID ONEWIN

BUDGET VALIDATION F_VAL_COAS ONEWIN

BUDGET VALIDATION F_VAL_FINISH TEXT

BUDGET VALIDATION F_VAL_HEADERS ONEWIN

BUDGET VALIDATION F_VAL_MAPPING COLUMNMAP

BUDGET VALIDATION F_VAL_MAPPING_DUR COLUMNMAP

BUDGET VALIDATION F_VAL_PERM OPTION

BUDGET VALIDATION F_VAL_PHASE ONEWIN

©2018 Ellucian. Confidential & Proprietary 261

System-Required Data

GORDSTE - Wizard Step Repeating Table

Add-In Code Wizard Name Step Name Step Type

BUDGET VALIDATION F_VAL_SEQNO TEXT

BUDGET VALIDATION G_VAL_TABLE OPTION

BUDGET VALIDATION N_VAL_BUDGID ONEWIN

BUDGET VALIDATION N_VAL_BUDGPH ONEWIN

BUDGET VALIDATION N_VAL_COAS ONEWIN

BUDGET VALIDATION N_VAL_FINISH TEXT

BUDGET VALIDATION N_VAL_FISCYR ONEWIN

BUDGET VALIDATION N_VAL_FTOT_BOOK WKSHEET

BUDGET VALIDATION N_VAL_FTOT_MAP COLUMNMAP

BUDGET VALIDATION N_VAL_HDERS_
WARNING

TEXT

BUDGET VALIDATION N_VAL_PLBD_BOOK WKSHEET

BUDGET VALIDATION N_VAL_PLBD_MAP COLUMNMAP

BUDGET VALIDATION N_VAL_PLBD_MAP_
NOFIN

COLUMNMAP

BUDGET VALIDATION N_VAL_PTOT_BOOK WKSHEET

BUDGET VALIDATION N_VAL_PTOT_MAP COLUMNMAP

BUDGET VALIDATION N_VAL_RTOT_BOOK WKSHEET

BUDGET VALIDATION N_VAL_RTOT_MAP COLUMNMAP

BUDGET UPLOAD N_UPLD_SGRP ONEWIN

BUDGET VALIDATION N_VAL_SGRP ONEWIN

GORDSTP - Step Type Property Repeating Table

Step Property Type Step Property Code Locked Required

COLUMNMAP REQUIREDCOLUMNS Y Y

COLUMNMAP REQUIRED Y Y

ONEWIN FINDDISPLAYED Y Y

TWOWIN FINDDISPLAYED Y Y

WKSHEET CAPTION N Y

WKSHEET PICTURE N N

WKSHEET SELECTIONPROC Y Y

©2018 Ellucian. Confidential & Proprietary 262

System-Required Data

GORDSTP - Step Type Property Repeating Table

Step Property Type Step Property Code Locked Required

WKSHEET STORINGPROC Y Y

WKSHEET REQUIRED Y Y

WKSHEET MULTISELECT Y Y

TEXT CAPTION_1 N N

TEXT CAPTION_2 N N

TEXT CAPTION_3 N N

TEXT PICTURE N N

FREEFORMAT PICTURE N N

FREEFORMAT CAPTION N Y

FREEFORMAT SELECTIONPROC Y Y

FREEFORMAT TEXTWIDTH Y Y

FREEFORMAT TEXTHEIGHT Y Y

FREEFORMAT STORINGPROC Y Y

TEXT CAPTION_1_HT N N

FREEFORMAT REQUIRED Y Y

FREEFORMAT VALIDATIONPROC Y Y

TEXT CAPTION_2_HT N N

TEXT CAPTION_3_HT N N

TEXT CAPTION_1_TOP N N

TEXT CAPTION_2_TOP N N

TEXT CAPTION_3_TOP N N

COLUMNMAP POPULATIONPROC Y Y

ONEWIN CAPTION N Y

ONEWIN STORINGPROC Y Y

ONEWIN REQUIRED Y Y

ONEWIN POPULATIONPROC Y Y

ONEWIN BOUNDCOLUMNS Y Y

ONEWIN SELECTIONPROC Y Y

OPTION OPTION_1 N N

ONEWIN PICTURE N N

©2018 Ellucian. Confidential & Proprietary 263

System-Required Data

GORDSTP - Step Type Property Repeating Table

Step Property Type Step Property Code Locked Required

OPTION OPTION_2 N N

OPTION OPTION_3 N N

OPTION OPTION_4 N N

OPTION OPTION_5 N N

OPTION OPTION_6 N N

OPTION OPTION_7 N N

OPTION OPTION_1_KEY N N

OPTION OPTION_2_KEY N N

OPTION OPTION_3_KEY N N

OPTION OPTION_4_KEY N N

OPTION OPTION_5_KEY N N

OPTION OPTION_6_KEY N N

OPTION OPTION_7_KEY N N

OPTION CAPTION N Y

OPTION PICTURE N N

OPTION STORINGPROC Y Y

OPTION SELECTIONPROC Y Y

ONEWIN COLUMNHEADERS Y Y

OPTION OPTION_0 N N

OPTION OPTION_0_KEY N N

TWOWIN BOUNDCOLUMNS Y Y

TWOWIN CAPTION N Y

TWOWIN PICTURE N N

TWOWIN COLUMNHEADERS Y Y

TWOWIN POPULATIONPROC Y Y

TWOWIN STORINGPROC Y Y

TWOWIN SELECTIONPROC Y Y

TWOWIN REQUIRED Y Y

ONEWIN MULTISELECT Y Y

OPTION REQUIRED Y Y

©2018 Ellucian. Confidential & Proprietary 264

System-Required Data

GORDSTP - Step Type Property Repeating Table

Step Property Type Step Property Code Locked Required

COLUMNMAP CAPTION N Y

COLUMNMAP SELECTIONPROC Y Y

COLUMNMAP COLUMNHEADERS Y Y

COLUMNMAP STORINGPROC Y Y

GORDWIZ Add-In Wizard Association Table

Wizard
Name

Description Add-In
Code

Menu Seq. Fin. Aid Position
Control

Billcsh

DOWNLOAD Download
Wizard

BUDGET 1 N Y N

VALIDATION Validation
Wizard

BUDGET 2 N Y N

UPLOAD Upload
Wizard

BUDGET 3 N Y N

Wizard Name HR Finance Advance Student Finish
Function

DOWNLOAD Y Y N N BANINST1.
GOKDSSB.
P_FINISH_
DOWNLOAD

VALIDATION Y Y N N BANINST1.
GOKDSSB.
P_FINISH_
VALIDATION

UPLOAD Y Y N N BANINST1.
GOKDSSB.
P_FINISH_
UPLOAD

Wizard Name Next Function Unload Function

DOWNLOAD BANINST1.GOKDSSB.
P_NEXT_ DOWNLOAD

BANINST1.GOKDSSB.
P_UNLOAD_ BUDGET

VALIDATION BANINST1.GOKDSSB.P_
NEXT_VALIDATION

BANINST1.GOKDSSB.
P_UNLOAD_ BUDGET

UPLOAD BANINST1.GOKDSSB.
P_NEXT_ UPLOAD

BANINST1.GOKDSSB.
P_UNLOAD_ BUDGET

©2018 Ellucian. Confidential & Proprietary 265

System-Required Data

GOREQNM - Event Queue Name Definition Table

Event Code Group Code Target System Code Status

CHANGE_PERSON_NAME CHGNAME PIPELINE I

CHANGE_PIN PINCHANGE PIPELINE I

APPLICATION_
RECEIVED

ID-MESSAGE PIPELINE I

GRADE_CHANGE CHGGRADE PIPELINE I

GRADE_ROLL GRADEROLL PIPELINE I

CHANGE_PERSON_ID CHGPERSID PIPELINE I

CHANGE_MAJOR CHGMAJOR PIPELINE I

SECTION_CANCELLED ID-MESSAGE PIPELINE I

ADD_REGISTRATION ADDREG PIPELINE I

ADD_SECTION ADDSECTION PIPELINE I

PAFCHANGE PAFCHANGE WORKFLOW I

NEWGIFT NEWGIFT WORKFLOW I

WITHDRAWSTUDENT WDSTUDENT WORKFLOW I

PSWDCHANGE PSWDCHANGE WORKFLOW I

GRADECHG GRADECHG WORKFLOW I

DOCAPPROVE DOCAPPROVE WORKFLOW I

EDOCUMENT EDOCUMENT WORKFLOW I

FAWITHDRAW FAWITHDRAW WORKFLOW I

DROP_REGISTRATION DROPREG PIPELINE I

ADD_NEW_STU_USER ADDSTUDENT PIPELINE I

ADD_TEACH_ASSIGN ADDTCHASG PIPELINE I

DELETE_TEACH_
ASSIGN

DELTCHASG PIPELINE I

CHANGE_SECTION_
NUM

CHGSECNUM PIPELINE I

CHANGE_COURSE_
TITLE

CHGTITLE PIPELINE I

CHANGE_COURSE_
DEPT

CHGDEPT PIPELINE I

DELETE_SECTION DELSECTION PIPELINE I

ADD_NEW_FAC_USER ADDFACULTY PIPELINE I

©2018 Ellucian. Confidential & Proprietary 266

System-Required Data

GOREQNM - Event Queue Name Definition Table

Event Code Group Code Target System Code Status

ADD_HOLD ADDHOLD PIPELINE I

END_TERM ENDTERM PIPELINE I

ADD_TERM ADDTERM PIPELINE I

EMAIL_UPDATE EMAILUPD PIPELINE A

EMAIL_INSERT EMAILINS PIPELINE A

ICASSIGN ICASSIGN INTCOMP I

ICENROLL ICENROLL INTCOMP I

ICPERSON ICPERSON INTCOMP I

ICSECTION ICSECTION INTCOMP I

ICTERM ICTERM INTCOMP I

CHANGE_MEETINGS CHANGEMEET PIPELINE I

CHANGE_EMAIL_ID CHGEMAILID PIPELINE I

CHANGE_SCHEDULE_
CODE

CHGSCHCODE PIPELINE I

LDITERM LDITERM LDI I

LDIPERSON LDIPERSON LDI I

LDICOURSE LDICOURSE LDI I

LDISECTION LDISECTION LDI I

LDICOLLEGE LDICOLLEGE LDI I

LDIDEPT LDIDEPT LDI I

LDIXLGRP LDIXLGRP LDI I

LDIXLMEM LDIXLMEM LDI I

LDIENROLL LDIENROLL LDI I

LDIASSIGN LDIASSIGN LDI I

GORFDPI FGAC PII Policy Table

Table Name Column Name Active Driver SQL

SPRIDEN SPRIDEN_PIDM N gokfgac.f_find_
pii_domain

©2018 Ellucian. Confidential & Proprietary 267

System-Required Data

GORRSQL - SQL Process Rules Table

Process
Code

Rule Code Seq. No. Active Start Date Select From Select
Value

CARDHOLDER_
ROLES

ALUMNUS 1 Y 19-OCT-05 FROM SELECT

CARDHOLDER_
ROLES

EMPLOYEE 1 Y 19-OCT-05 FROM SELECT

CARDHOLDER_
ROLES

STUDENT 1 Y 19-OCT-05 FROM SELECT

HOUSING_
ELIGIBILITY

STUDENT_
ENROLLED

1 Y 19-OCT-05 FROM SELECT

INTCOMP ALUMNI 1 Y 27-OCT-05 FROM SELECT

INTCOMP APPACCEPT 1 Y 27-OCT-05 FROM SELECT

INTCOMP APPLICANT 1 Y 27-OCT-05 FROM SELECT

INTCOMP DEVELOPMENT
OFFICER

1 Y 27-OCT-05 FROM SELECT

INTCOMP EMPLOYEE 1 Y 27-OCT-05 FROM SELECT

INTCOMP FINANCE 1 Y 27-OCT-05 FROM SELECT

INTCOMP FRIENDS 1 Y 27-OCT-05 FROM SELECT

INTCOMP INTACCEPT 1 Y 27-OCT-05 FROM SELECT

INTCOMP PROSPECT 1 Y 27-OCT-05 FROM SELECT

INTCOMP STUDENT 1 Y 27-OCT-05 FROM SELECT

INTCOMP STUDENT 2 N 27-OCT-05 FROM SELECT

INTCOMP FACULTY 1 Y 27-OCT-05 FROM SELECT

INTCOMP FACULTY 2 N 27-OCT-05 FROM SELECT

For all entries above, Validated Indicator is Y, and End Date is null. The Where Clause and
Parsed SQL values for each row are shown in the tables below.

Rule Code Seq. No. Where Clause

ALUMNUS 1 SELECT DISTINCT
aprcatg_pidm FROM
spriden, atvdonr,
aprcatg WHERE
spriden_entity_ind
= 'P' AND
spriden_change_ind IS
NULL AND aprcatg_pidm
= spriden_pidm

©2018 Ellucian. Confidential & Proprietary 268

System-Required Data

Rule Code Seq. No. Where Clause
AND atvdonr_code =
aprcatg_donr_code AND
atvdonr_alum_ind = 'Y'

EMPLOYEE 1 SELECT pebempl_pidm
FROM pebempl WHERE
NVL(pebempl_term_date,
TRUNC(SYSDATE) + 1)
> TRUNC(SYSDATE) AND
NVL(pebempl_loa_beg_date,
TRUNC(SYSDATE) - 1)
< TRUNC(SYSDATE) AND
pebempl_empl_status IN
('A', 'F', 'P')

STUDENT 1 SELECT sgbstdn_pidm
FROM sgbstdn a,
stvstst WHERE
a.sgbstdn_stst_code
= stvstst_code AND
stvstst_reg_ind
= 'Y' AND
a.sgbstdn_term_code_eff
= (SELECT MAX
(b.sgbstdn_term_code_eff)
FROM sgbstdn b WHERE
b.sgbstdn_pidm =
a.sgbstdn_pidm AND
b.sgbstdn_term_code_eff
<= :TERM)

STUDENT_ ENROLLED 1 SELECT sfbetrm_pidm
FROM stvests, sfbetrm
WHERE sfbetrm_term_code
= :TERM AND
stvests_code =
sfbetrm_ests_code AND
stvests_wd_ind = ‘N’

ALUMNI 1 SELECT DISTINCT
aprcatg_pidm FROM
aprcatg WHERE
EXISTS (SELECT ‘X’
FROM atvdonr WHERE
atvdonr_code =
aprcatg_donr_code AND
atvdonr_alum_ind = ‘Y’)

APPACCEPT 1 SELECT DISTINCT
sarappd_pidm FROM
sarappd WHERE

©2018 Ellucian. Confidential & Proprietary 269

System-Required Data

Rule Code Seq. No. Where Clause
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind =
‘Y’)

APPLICANT 1 SELECT DISTINCT
p.saradap_pidm FROM
saradap p WHERE
NOT EXISTS (SELECT
‘Y’ FROM sarappd
WHERE sarappd_pidm
= p.saradap_pidm AND
sarappd_term_code_entry
=
p.saradap_term_code_entry
AND sarappd_appl_no =
p.saradap_appl_no AND
(sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_inst_acc_ind
= ‘Y’ AND
stvapdc_stdn_acc_ind
IS NULL) OR
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind
IS NOT NULL))) AND
NOT EXISTS (SELECT
‘Y’ FROM saradap s
WHERE s.saradap_pidm
= p.saradap_pidm AND
s.saradap_term_code_entry
=
p.saradap_term_code_entry
AND s.saradap_levl_code
= p.saradap_levl_code
AND EXISTS (SELECT
‘Y’ FROM sarappd
WHERE sarappd_pidm
= s.saradap_pidm AND
sarappd_term_code_entry
=
s.saradap_term_code_entry
AND sarappd_appl_no =
s.saradap_appl_no AND
(sarappd_apdc_code IN

©2018 Ellucian. Confidential & Proprietary 270

System-Required Data

Rule Code Seq. No. Where Clause
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_inst_acc_ind
= ‘Y’ AND
stvapdc_stdn_acc_ind
IS NULL) OR
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind IS
NOT NULL))))

DEVELOPMENT OFFICER 1 SELECT DISTINCT
twgrrole_pidm FROM
twgrrole WHERE
twgrrole_role =
‘DEVELOPMENTOFFICER’

EMPLOYEE 1 SELECT pebempl_pidm
FROM pebempl,
gtvsdax WHERE
gtvsdax_external_code(+)
= pebempl_ecls_code AND
gtvsdax_internal_code_group(+)
= 'INTCOMP' AND
gtvsdax_internal_code(+)
= 'LDIEMPEX' GROUP BY
pebempl_pidm HAVING
COUNT(gtvsdax_external_code)
= 0

FINANCE 1 SELECT DISTINCT
gobeacc_pidm FROM
gobeacc, fobprof WHERE
fobprof_user_id =
gobeacc_username AND
fobprof_web_access_ind
= ‘Y’

FRIENDS 1 SELECT DISTINCT
aprcatg_pidm FROM
aprcatg WHERE
EXISTS (SELECT ‘X’
FROM atvdonr WHERE
atvdonr_code =
aprcatg_donr_code AND
atvdonr_frnd_ind = ‘Y’)

INTACCEPT 1 SELECT DISTINCT
sarappd_pidm FROM
sarappd, saradap

©2018 Ellucian. Confidential & Proprietary 271

System-Required Data

Rule Code Seq. No. Where Clause
WHERE saradap_pidm
= sarappd_pidm AND
saradap_term_code_entry
=
sarappd_term_code_entry
AND saradap_appl_no
= sarappd_appl_no AND
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_inst_acc_ind
= ‘Y’ AND
stvapdc_stdn_acc_ind
IS NULL) AND NOT
EXISTS (SELECT ‘Y’
FROM saradap s WHERE
s.saradap_pidm =
sarappd_pidm AND
s.saradap_levl_code =
saradap_levl_code AND
s.saradap_term_code_entry
=
sarappd_term_code_entry
AND s.saradap_appl_no
= sarappd_appl_no
AND EXISTS (SELECT
‘Y’ FROM sarappd p
WHERE p.sarappd_pidm
= s.saradap_pidm AND
p.sarappd_term_code_entry
=
s.saradap_term_code_entry
AND p.sarappd_appl_no =
s.saradap_appl_no AND
p.sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind IS
NOT NULL)))

PROSPECT 1 SELECT DISTINCT
srbrecr_pidm FROM
srbrecr WHERE NOT
EXISTS (SELECT
'Y' FROM saradap
WHERE saradap_pidm
= srbrecr_pidm AND
saradap_term_code_entry
= srbrecr_term_code

©2018 Ellucian. Confidential & Proprietary 272

System-Required Data

Rule Code Seq. No. Where Clause
AND saradap_levl_code =
srbrecr_levl_code)

STUDENT 1 SELECT DISTINCT
a.sgbstdn_pidm
FROM sgbstdn a,
stvstst WHERE
a.sgbstdn_stst_code
= stvstst_code AND
stvstst_reg_ind
= 'Y' AND
a.sgbstdn_term_code_eff
IN (SELECT
MAX(b.sgbstdn_term_code_eff)
FROM sgbstdn b, sobterm
c WHERE b.sgbstdn_pidm
= a.sgbstdn_pidm AND
b.sgbstdn_term_code_eff
<= c.sobterm_term_code
AND
sobterm_profile_send_ind
= 'Y' GROUP BY
c.sobterm_term_code)

STUDENT 2 SELECT DISTINCT
sfrstcr_pidm FROM
sfrstcr WHERE
sfrstcr_term_code
IN (SELECT
sobterm_term_code
FROM sobterm WHERE
sobterm_profile_send_ind
= ‘Y’)

FACULTY 1 SELECT DISTINCT
a.sibinst_pidm
FROM sibinst a,
stvfcst WHERE
a.sibinst_term_code_eff
IN (SELECT
MAX(b.sibinst_term_code_eff)
FROM sibinst b, sobterm
c WHERE b.sibinst_pidm
= a.sibinst_pidm AND
b.sibinst_term_code_eff
<= c.sobterm_term_code
AND
sobterm_profile_send_ind
= 'Y' GROUP BY
c.sobterm_term_code)

©2018 Ellucian. Confidential & Proprietary 273

System-Required Data

Rule Code Seq. No. Where Clause
AND a.sibinst_fcst_code
= stvfcst_code AND
stvfcst_active_ind =
'A'

FACULTY 2 SELECT DISTINCT
sirasgn_pidm FROM
sirasgn WHERE
sirasgn_term_code
IN (SELECT
sobterm_term_code
FROM sobterm WHERE
sobterm_profile_send_ind
= ‘Y’)

Rule Code Seq. No. Parsed SQL

ALUMNUS 1 SELECT DISTINCT
aprcatg_pidm FROM
spriden, atvdonr,
aprcatg WHERE
spriden_entity_ind
= 'P' AND
spriden_change_ind IS
NULL AND aprcatg_pidm
= spriden_pidm
AND atvdonr_code =
aprcatg_donr_code AND
atvdonr_alum_ind = 'Y'

EMPLOYEE 1 SELECT pebempl_pidm
FROM pebempl WHERE
NVL(pebempl_term_date,
TRUNC(SYSDATE) + 1)
> TRUNC(SYSDATE) AND
NVL(pebempl_loa_beg_date,
TRUNC(SYSDATE) - 1)
< TRUNC(SYSDATE) AND
pebempl_empl_status IN
('A', 'F', 'P')

STUDENT 1 SELECT sgbstdn_pidm
FROM sgbstdn a,
stvstst WHERE
a.sgbstdn_stst_code
= stvstst_code AND
stvstst_reg_ind
= 'Y' AND
a.sgbstdn_term_code_eff
= (SELECT MAX

©2018 Ellucian. Confidential & Proprietary 274

System-Required Data

Rule Code Seq. No. Parsed SQL
(b.sgbstdn_term_code_eff)
FROM sgbstdn b WHERE
b.sgbstdn_pidm =
a.sgbstdn_pidm AND
b.sgbstdn_term_code_eff
<= :TERM)

STUDENT_ ENROLLED 1 SELECT sfbetrm_pidm
FROM stvests, sfbetrm
WHERE sfbetrm_term_code
= :TERM AND
stvests_code =
sfbetrm_ests_code AND
stvests_wd_ind = ‘N’

ALUMNI 1 SELECT DISTINCT
aprcatg_pidm FROM
aprcatg WHERE
EXISTS (SELECT ‘X’
FROM atvdonr WHERE
atvdonr_code =
aprcatg_donr_code AND
atvdonr_alum_ind = ‘Y’)

APPACCEPT 1 SELECT DISTINCT
sarappd_pidm FROM
sarappd WHERE
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind =
‘Y’)

APPLICANT 1 SELECT DISTINCT
p.saradap_pidm FROM
saradap p WHERE
NOT EXISTS (SELECT
‘Y’ FROM sarappd
WHERE sarappd_pidm
= p.saradap_pidm AND
sarappd_term_code_entry
=
p.saradap_term_code_entry
AND sarappd_appl_no =
p.saradap_appl_no AND
(sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_inst_acc_ind
= ‘Y’ AND
stvapdc_stdn_acc_ind

©2018 Ellucian. Confidential & Proprietary 275

System-Required Data

Rule Code Seq. No. Parsed SQL
IS NULL) OR
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind IS
NOT NULL)))

AND NOT EXISTS (SELECT
‘Y’ FROM saradap s
WHERE s.saradap_pidm
= p.saradap_pidm AND
s.saradap_term_code_entry
=
p.saradap_term_code_entry
AND s.saradap_levl_code
= p.saradap_levl_code
AND EXISTS (SELECT
‘Y’ FROM sarappd
WHERE sarappd_pidm
= s.saradap_pidm AND
sarappd_term_code_entry
=
s.saradap_term_code_entry
AND sarappd_appl_no =
s.saradap_appl_no AND
(sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_inst_acc_ind
= ‘Y’ AND
stvapdc_stdn_acc_ind
IS NULL) OR
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind IS
NOT NULL))))

DEVELOPMENT OFFICER 1 SELECT DISTINCT
twgrrole_pidm FROM
twgrrole WHERE
twgrrole_role =
‘DEVELOPMENTOFFICER’

EMPLOYEE 1 SELECT pebempl_pidm
FROM pebempl,
gtvsdax WHERE
gtvsdax_external_code(+)
= pebempl_ecls_code AND
gtvsdax_internal_code_group(+)

©2018 Ellucian. Confidential & Proprietary 276

System-Required Data

Rule Code Seq. No. Parsed SQL
= 'INTCOMP' AND
gtvsdax_internal_code(+)
= 'LDIEMPEX' GROUP BY
pebempl_pidm HAVING
COUNT(gtvsdax_external_code)
= 0

FINANCE 1 SELECT DISTINCT
gobeacc_pidm FROM
gobeacc, fobprof WHERE
fobprof_user_id =
gobeacc_username AND
fobprof_web_access_ind
= ‘Y’

FRIENDS 1 SELECT DISTINCT
aprcatg_pidm FROM
aprcatg WHERE
EXISTS (SELECT ‘X’
FROM atvdonr WHERE
atvdonr_code =
aprcatg_donr_code AND
atvdonr_frnd_ind = ‘Y’)

INTACCEPT 1 SELECT DISTINCT
sarappd_pidm FROM
sarappd, saradap
WHERE saradap_pidm
= sarappd_pidm AND
saradap_term_code_entry
=
sarappd_term_code_entry
AND saradap_appl_no
= sarappd_appl_no AND
sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_inst_acc_ind
= ‘Y’ AND
stvapdc_stdn_acc_ind
IS NULL) AND NOT
EXISTS (SELECT ‘Y’
FROM saradap s WHERE
s.saradap_pidm =
sarappd_pidm AND
s.saradap_levl_code =
saradap_levl_code AND
s.saradap_term_code_entry
=
sarappd_term_code_entry

©2018 Ellucian. Confidential & Proprietary 277

System-Required Data

Rule Code Seq. No. Parsed SQL
AND s.saradap_appl_no
= sarappd_appl_no
AND EXISTS (SELECT
‘Y’ FROM sarappd p
WHERE p.sarappd_pidm
= s.saradap_pidm AND
p.sarappd_term_code_entry
=
s.saradap_term_code_entry
AND p.sarappd_appl_no =
s.saradap_appl_no AND
p.sarappd_apdc_code IN
(SELECT stvapdc_code
FROM stvapdc WHERE
stvapdc_stdn_acc_ind IS
NOT NULL)))

PROSPECT 1 SELECT DISTINCT
srbrecr_pidm FROM
srbrecr WHERE NOT
EXISTS (SELECT
'Y' FROM saradap
WHERE saradap_pidm
= srbrecr_pidm AND
saradap_term_code_entry
= srbrecr_term_code
AND saradap_levl_code =
srbrecr_levl_code)

STUDENT 1 SELECT DISTINCT
a.sgbstdn_pidm
FROM sgbstdn a,
stvstst WHERE
a.sgbstdn_stst_code
= stvstst_code AND
stvstst_reg_ind
= 'Y' AND
a.sgbstdn_term_code_eff
IN (SELECT
MAX(b.sgbstdn_term_code_eff)
FROM sgbstdn b, sobterm
c WHERE b.sgbstdn_pidm
= a.sgbstdn_pidm AND
b.sgbstdn_term_code_eff
<= c.sobterm_term_code
AND
sobterm_profile_send_ind
= 'Y' GROUP BY
c.sobterm_term_code)

©2018 Ellucian. Confidential & Proprietary 278

System-Required Data

Rule Code Seq. No. Parsed SQL

STUDENT 2 SELECT DISTINCT
sfrstcr_pidm FROM
sfrstcr WHERE
sfrstcr_term_code
IN (SELECT
sobterm_term_code
FROM sobterm WHERE
sobterm_profile_send_ind
= ‘Y’)

FACULTY 1 SELECT DISTINCT
a.sibinst_pidm
FROM sibinst a,
stvfcst WHERE
a.sibinst_term_code_eff
IN (SELECT
MAX(b.sibinst_term_code_eff)
FROM sibinst b, sobterm
c WHERE b.sibinst_pidm
= a.sibinst_pidm AND
b.sibinst_term_code_eff
<= c.sobterm_term_code
AND
sobterm_profile_send_ind
= 'Y' GROUP BY
c.sobterm_term_code)
AND a.sibinst_fcst_code
= stvfcst_code AND
stvfcst_active_ind =
'A'

FACULTY 2 SELECT DISTINCT
sirasgn_pidm FROM
sirasgn WHERE
sirasgn_term_code
IN (SELECT
sobterm_term_code
FROM sobterm WHERE
sobterm_profile_send_ind
= ‘Y’)

GORSQPA - SQL Process Parameter Table

Process Code Code Parameter Code

CARDHOLDER_ROLES TERM

HOUSING_ELIGIBILITY TERM

SEVIS PIDM

©2018 Ellucian. Confidential & Proprietary 279

System-Required Data

GORSQPA - SQL Process Parameter Table

Process Code Code Parameter Code

SEVIS TERM

GORSSQL

Process Rule Parsed SQL Statement

IAM IAM_GOBEACC_RULE SELECT GOBEACC_USERNAME
BANNERINB_USER
FROM GOBEACC WHERE
GOBEACC_PIDM =:PIDM

GTVCELG Certification of Eligibility Table

I-20 I-20 Information

I-94 I-94 Data

IAP-66 International Information

GTVDADD Add-In Code Validation Table

BUDGET Spreadsheet Budgeting

GTVDIRO Directory Options Validation Table

NAME Name

ADDR_PR Permanent Address

TELE_PR Permanent Telephone

ADDR_CP Campus Address

TELE_CP Campus Telephone

ADDR_OF Office Address

TELE_OF Office Telephone

TELE_FAX Fax Number

EMAIL E-mail

DEPT Employee Department

GRD_YEAR Expected Graduation Year

COLLEGE College Affiliation

TITLE Employee Position Title

©2018 Ellucian. Confidential & Proprietary 280

System-Required Data

GTVDIRO Directory Options Validation Table

ADDR_HO Home Address

CLASS_YR Class Year

ADDR_BU Business Address

MAIDEN Maiden Name

TELE_BU Business Telephone

PR_COLL Preferred College

TELE_HO Home Telephone

GTVDPRP Step Property Validation Table

REQUIREDCOLUMNS Required Columns

SELECTIONPROC Selection Procedure

OPTION_0 Option(0)

OPTION_1 Option(1)

OPTION_2 Option(2)

OPTION_3 Option(3)

OPTION_4 Option(4)

OPTION_5 Option(5)

OPTION_6 Option(6)

OPTION_7 Option(7)

OPTION_0_KEY Option(0) - Key

OPTION_1_KEY Option(1) - Key

OPTION_2_KEY Option(2) - Key

OPTION_3_KEY Option(3) - Key

OPTION_4_KEY Option(4) - Key

OPTION_5_KEY Option(5) - Key

OPTION_6_KEY Option(6) - Key

OPTION_7_KEY Option(7) - Key

PICTURE Picture

POPULATIONPROC Population Procedure

REQUIRED Required

TEXTWIDTH Free Format Text Width

©2018 Ellucian. Confidential & Proprietary 281

System-Required Data

GTVDPRP Step Property Validation Table

MULTISELECT Multiple Selections

STORINGPROC Storing Procedure

FINDDISPLAYED Find Displayed

TEXTHEIGHT Free Format Text Height

CAPTION_1_HT Caption(1) Height

VALIDATIONPROC ValidationProc

CAPTION_2_HT Caption(2) Height

CAPTION_3_HT Caption(3) Height

CAPTION_3_TOP Caption(3) Top

BOUNDCOLUMNS Bounded Population Columns

CAPTION_2_TOP Caption(2) Top

CAPTION Caption

CAPTION_1 Caption(1)

CAPTION_2 Caption(2)

CAPTION_3 Caption(3)

COLUMNHEADERS Column Headers

CAPTION_1_TOP Caption(1) Top

GTVDSTP Step Type Code Validation Table

ONEWIN One Window Step Type

TEXT Text Step Type

OPTION Option Step Type

COLUMNMAP Column Mapping Step Type

TWOWIN Two Window Step Type

WKSHEET Open Worksheets Step Type

FREEFORMAT Free Format Entry Step type

GTVDUNT Duration Unit Code Validation Table

Code Description Number of Days VR Message Number

WEEK Weeks 7

MTHS Months 31

©2018 Ellucian. Confidential & Proprietary 282

System-Required Data

GTVEQNM Event Code Validation Table

ADD_REGISTRATION Add New Registration to CP

ADD_NEW_STU_USER Add New Student User to CP

GRADE_CHANGE Grade Change

GRADE_ROLL Grade Roll

APPLICATION_RECEIVED Admissions Application Receipt

CHANGE_PIN Change PIN in CP

CHANGE_MAJOR Change Student Major in CP

CHANGE_PERSON_ID Change Person ID in CP

CHANGE_PERSON_NAME Change Person Name in CP

SECTION_CANCELLED Cancelled Section Broadcast

PAFCHANGE Changes to the PAF on
NOAEPAF

NEWGIFT A new Gift from a donor

WITHDRAWSTUDENT Student Withdrawal

PSWDCHANGE Password Change

GRADECHG A Students Grade Change

DOCAPPROVE Documents for Approval

EDOCUMENT Electronic Document

FAWITHDRAW Financial Aid Withdraw Student

DROP_REGISTRATION Drop Registration from CP

ADD_SECTION Add New Section to CP

ADD_TEACH_ASSIGN Add Teaching Assignment to
CP

DELETE_TEACH_ASSIGN Delete Teaching Assignment

CHANGE_SECTION_NUM Change Section Number in CP

CHANGE_COURSE_TITLE Change Course Title in CP

CHANGE_COURSE_DEPT Change Course Department in
CP

DELETE_SECTION Delete Section from CP

ADD_NEW_FAC_USER Add New Faculty User to CP

ADD_HOLD Add Hold Smart Event

END_TERM End Term in CP

©2018 Ellucian. Confidential & Proprietary 283

System-Required Data

GTVEQNM Event Code Validation Table

ADD_TERM Add New Term to CP

EMAIL_UPDATE E-Mail Address Update

EMAIL_INSERT E-Mail Address Insert

ICASSIGN IMS Faculty Assignment Event

ICENROLL IMS Enrolled Student Event

ICPERSON IMS Person Event

ICSECTION IMS Section Event

ICTERM IMS Term Event

CHANGE_MEETINGS Meeting Times in CP

CHANGE_EMAIL_ID EmailID change in CP

CHANGE_SCHEDULE_CODE Schedule code change in CP

LDITERM LDI Term Event

LDIPERSON LDI Person Event

LDICOURSE LDI Course Event

LDISECTION LDI Section Event

LDICOLLEGE LDI College Event

LDIDEPT LDI Department Event

LDIXLGRP LDI Cross Listed Group Event

LDIXLMEM LDI Cross Listed Member Event

LDIENROLL LDI Student Enrollment Event

LDIASSIGN LDI Faculty Assignment Event

GTVEQPC Group Code Validation Table

ID-MESSAGE ID and Message

PINCHANGE PIN Change

CHGMAJOR Change Student Major in CP

CHGNAME Change Person Name in CP

CHGPERSID Change Person ID in CP

ADDREG Add New Registration to CP

ADDSECTION Add New Section to CP

PAFCHANGE PAF Change on NOAEPAF

©2018 Ellucian. Confidential & Proprietary 284

System-Required Data

GTVEQPC Group Code Validation Table

NEWGIFT A new Gift

WDSTUDENT Withdraw a Student

PSWDCHANGE Password Change

GRADECHG Grade Change

DOCAPPROVE Documents for Approval

EDOCUMENT Electronic Document

FAWITHDRAW Financial Aid Withdraw Student

DROPREG Drop Registration from CP

ADDSTUDENT Add New Student User to CP

ADDTCHASG Add Teaching Assignment

DELTCHASG Delete Teaching Assignment

CHGSECNUM Change Section Number in CP

CHGTITLE Change Course Title in CP

CHGDEPT Change Course Department in
CP

DELSECTION Delete Section from CP

ADDFACULTY Add New Faculty User to CP

CHGGRADE Grade Change

GRADEROLL Grade Roll

ENDTERM End Term in CP

ADDTERM Add New Term to CP

ADDHOLD Add New Hold in CP

EMAILUPD E-Mail Update

EMAILINS E-Mail Insert

ICASSIGN IMS Teaching Assignment
Parms

ICENROLL IMS Student Enrollment Parms

ICPERSON IMS Person Parms

ICSECTION IMS Section Parms

ICTERM IMS Term Parms

CHANGEMEET Class Meetings Times in CP

©2018 Ellucian. Confidential & Proprietary 285

System-Required Data

GTVEQPC Group Code Validation Table

CHGEMAILID Change EmailID in CP

CHGSCHCODE Change Schedule Code

LDITERM LDI Term Parms

LDIPERSON LDI Person Parms

LDICOURSE LDI Course Parms

LDISECTION LDI Section Parms

LDICOLLEGE LDI College Parms

LDIDEPT LDI Department Parms

LDIXLGRP LDI Cross Listed Group Parms

LDIXLMEM LDI Cross Listed Member
Parms

LDIENROLL LDI Student Enrollment Parms

LDIASSIGN LDI Faculty Assignment Parms

GTVEQPM - Parameter Code Validation Table

MESSAGE Message

ID Person ID

EVENTTYPE Event Type

$TEMPLATE Template Name

SUBEVENTTYPE Sub Event Type

CLEARTEXT/SCT.CREDENTIAL Profile PIN Value

CLEARTEXT/CREDENTIAL Campus Pipeline PIN Value

EmailID E-Mail Address

UserName Student/Faculty ID

Major Student Major

LastName Person Last Name

FirstName Person First Name

SCT.ID Student/Faculty ID

DONORNAME Name of Donor

DONORPDC Donor’s Primary Donor Category

GIFTAMT the amount of the Gift

©2018 Ellucian. Confidential & Proprietary 286

System-Required Data

GTVEQPM - Parameter Code Validation Table

GIFTDATE the date of the gift

GIFTNO a Gift number

PIDM pidm

TERM Term Code

ENC_PASSWORD Encrypted Oracle Password Code

ORACLE_USERNAME Oracle Username Code

DOCTYPE Document Type

ACAT_CODE PAF Approval Category Code

EFFECTIVE_DATE effective date

EMPLOYEE_CLASS Employee Class

EVENTNAME Workflow Event Name (required)

PAF_ORIGINATOR_USERID PAF Originator Oracle Userid

POSITION Position

PRODUCTTYPE Workflow Product Type (reqd)

TRANS_NO PAF Transaction Number

TRANS_STATUS PAF Transaction Status

WORKFLOWSPECIFICNAME Workflow Specific Name (reqd)

DOCNUMBER Document Number

AIDY Aid Year Code

WITHDRAW_DATE Withdraw Date

IDType ID Type

SCT.Term.Description Term Description

SCT.Course.Title Course Title

SCT.Course.Term Course Term

SCT.Course.Section Course Section

SCT.Course.Instructor.ID Course Instructor ID

SCT.Course.Instructor Course Instructor Name

SCT.Course.Department Course Department

Role Profile Role

EnrolledCourse Enrolled Course (CRN||Term)

ClearText/SCT.Credential Profile PIN Value

©2018 Ellucian. Confidential & Proprietary 287

System-Required Data

GTVEQPM - Parameter Code Validation Table

ClearText/Credential Profile PIN Value

DELIVERYTYPE Message Delivery Type for CP

DisplayName Display Name for CP

EnrollmentStatus.FullTime Enrollment Status Description

MiddleName Person Middle Name

SCT.Activity.Date Activity Date

SCT.Course.Number Course Number

SCT.Hold.Description Hold Type

SCT.Section.Title Section Title

SCT.Subject.Code Subject Code

SCT.Term.Active Term Active

SCT.Term.End.Date Term End Date

SCT.Term.Sort.Key Term Sort Key

SCT.Term.Start.Date Term Start Date

url-0.TERM Term Code for Smart Event

DATATYPE Gen. Identifier for Event Type

G.DESCRIPTION.LONG Long Group Name

G.DESCRIPTION.SHORT Short Group Name

G.ENROLLCONTROL.ENROLLACCEPT Accept Enrollment- Yes/No

G.ENROLLCONTROL.ENROLLALLOWED Allow Enrolling- Yes/No

G.EXTENSION.DELIVERY Course content delivery

G.GROUPTYPE.TYPEVALUE Type Value

G.GROUPTYPE.TYPEVALUE.LEVEL Type Value Level

G.ORG.ID Org. Identifier

G.ORG.ORGNAM Organization Name

G.ORG.ORGUNIT Admin Unit, Math/English

G.RELATIONSHIP.LABEL Nature of Group & SubGroup

G.RELATIONSHIP.MYRELATIONSHIP 1=Parent, 2=Child, 3=Other

G.RELATIONSHIP.SOURCEDID.ID Group/SubGroup ID by System

G.SOURCEDID.ID Group/SubGroup ID by System

G.TIMEFRAME.BEGIN Available Participation Date

©2018 Ellucian. Confidential & Proprietary 288

System-Required Data

GTVEQPM - Parameter Code Validation Table

G.TIMEFRAME.END Defines End Date

G.TRANSACTION Rec type, 1 add/2 update/3 del

M.EXTENSION.MIDTERMRESULT.MODE Desc of Midterm Grading Mode

M.MEMBER.IDTYPE 1=Person, 2=Group

M.MEMBER.ROLE.FINALRESULT.MODE Desc of Final Result Mode

M.MEMBER.ROLE.ROLETYPE 01=Learner, 02=Instructor

M.MEMBER.ROLE.STATUS 1= Active, 2= Inactive

M.MEMBER.ROLE.SUBROLE Further Defines Roles

M.MEMBER.ROLE.TRANSACTION Rec type, 1 add/2 update/3 Del

M.MEMBER.ROLE.USERID Person’s ID to Access Group

M.MEMBER.SOURCEDID.ID ID of Org. or Source

M.SOURCEDID.ID Person/Group/Sub Unique ID

P.ADR.COUNTRY Country

P.ADR.LOCALITY Locality/City

P.ADR.PCODE Postal Code

P.ADR.REGION State or Province

P.ADR.STREET Street Address

P.DEMOGRAPHICS.GENDER Gender of Person

P.EMAIL Email Address of Person

P.EXTENSION.USERROLE User Role

P.EXTENSION.WEBCREDENTIAL Web Credential

P.NAME.FN Person’s name

P.NAME.N.FAMILY Family name not last name

P.NAME.N.GIVEN Given name

P.NAME.N.OTHER Other name parts

P.NAME.N.PREFIX Mr, Mrs, Ms, Dr etc

P.NAME.N.SUFFIX Jr, III, Sr

P.NAME.NICKNAME Preferred Name and format

P.SOURCEDID.ID Person ID defined by Source

P.TEL Phone Number of Person

P.TEL.TELTYPE Phone# type, 1=Voice or 2=Fax

©2018 Ellucian. Confidential & Proprietary 289

System-Required Data

GTVEQPM - Parameter Code Validation Table

P.TRANSACTION Rec type, 1 add/2 update/3 del

P.USERID Person’s access ID

SCT.Course.Delivery Course content delivery

SCT.Course.ClassTimes Class Meeting Times

SOURCE Source of Event

M.EXTENSION.GRADABLE Gradable Indicator

M.MEMBER.ROLE.COMMENTS Member Comments

G.GROUPTYPE.SCHEME Group type Coding Scheme

G.TIMEFRAME.BEGIN.RESTRICT Allow Participation?- Yes/No

G.TIMEFRAME.END.RESTRICT Defines Participation Ending

ClearText.Credential Campus Pipeline Password Value

ClearText.SCT.Credential Profile PIN Value

SourcedID.Source Identifier for Source System

SourcedID.ID Unique ID defined by Source

G.EXTENSION.DEL.RELATIONSHIP.LABEL Nature of Group and SubGroup

G.EXTENSION.DEL.RELATIONSHIP.
MYRELATIONSHIP

1=Parent, 2=Child, 3=Other

G.EXTENSION.DEL.RELATIONSHIP.
SOURCEDID.ID

Group/SubGroup ID by System

G.ATT.RECSTATUS IMS Record Status

G.DESCRIPTION.FULL Full Group Description Name

G.EXTENSION.LUMINISGROUP.
DELIVERYSYSTEM

System delivering content

G.EXTENSION.LUMINISGROUP.EVENTS.
RECURRINGEVENT.BEGINDATE

Event Begin Date

G.EXTENSION.LUMINISGROUP.EVENTS.
RECURRINGEVENT.BEGINTIME

Event Begin Time

G.EXTENSION.LUMINISGROUP.EVENTS.
RECURRINGEVENT.DAYSOFWEEK

Event Days of the Week

G.EXTENSION.LUMINISGROUP.EVENTS.
RECURRINGEVENT.ENDDATE

Event End Date

G.EXTENSION.LUMINISGROUP.EVENTS.
RECURRINGEVENT.ENDTIME

Event End Time

©2018 Ellucian. Confidential & Proprietary 290

System-Required Data

GTVEQPM - Parameter Code Validation Table

G.EXTENSION.LUMINISGROUP.EVENTS.
RECURRINGEVENT.EVENTDESC

Event Description

G.EXTENSION.LUMINISGROUP.EVENTS.
RECURRINGEVENT.LOCATION

TBA or Bldg w/ Room Number

G.EXTENSION.LUMINISGROUP.SORT Term Sort Order

G.GROUPTYPE.TYPEVALUE.ATT.LEVEL Group Type Level 1

G.RELATIONSHIP.ATT.RELATION Group Relationship Attribute

G.TIMEFRAME.BEGIN.ATT.RESTRICT Begin Restriction Attribute

G.TIMEFRAME.END.ATT.RESTRICT End Restriction Attribute

M.MEMBER.ROLE.ATT.RECSTATUS IMS Record Status

M.MEMBER.ROLE.ATT.ROLETYPE Membership roletype

M.MEMBER.ROLE.EXTENSION.
LUMINISROLE.GRADABLE

Gradable Indicator

M.MEMBER.ROLE.INTERIMRESULT.
ATT.RESULTTYPE

Midterm result attribute

M.MEMBER.ROLE.INTERIMRESULT.MODE Desc of Midterm Grading Mode

ONLINETOPIC Y = publish to LMS

P.ATT.RECSTATUS IMS Record Status

P.EXTENSION.LUMINISPERSON.
ACADEMICDEGREE

Faculty Academic Degree

P.EXTENSION.LUMINISPERSON.
ACADEMICMAJOR

Student Academic Major

P.EXTENSION.LUMINISPERSON.
ACADEMICTITLE

Faculty Academic Title

P.EXTENSION.LUMINISPERSON.
CUSTOMROLE

Custom Person Role

P.INSTITUTIONROLE.ATT.
INSTITUTIONROLETYPE

Person Institution Role

P.INSTITUTIONROLE.ATT.PRIMARYROLE Person Primary Role

P.NAME.N.PARTNAME Middle Name

P.NAME.N.PARTNAME.ATT.PARTNAMETYPE Partname Type (Middlename)

P.TEL.ATT.TELTYPE Telephone type attribute

P.USERID.ATT.PASSWORD Userid password attribute

P.USERID.ATT.USERIDTYPE Userid type attribute

©2018 Ellucian. Confidential & Proprietary 291

System-Required Data

GTVEQTS Target System Code Validation Table

PIPELINE Campus Pipeline

WORKFLOW SCT Workflow

INTCOMP SCT Integrator

LDI Luminis Data Integration

GTVLETR Letter Process Letter Validation Table

Code Duplicate Description Print Command AlternateLetter
Code

MG_ACKN_LTR Y Matching Gift
Acknowledgement

EMP_MG_NOTICE Y Employee
Notification of
Match

GIFT_RECEIPT Y Gift/Pledge
Payment Receipt

GIFT_ACKN_LTR Y Gift
Acknowledgement
Letter

PLEDGE_ACKN Y Pledge
Acknowledgement
Letter

DIRECTOR_
THANKS

N Director’s Gift
Thank you Ltr

PLEDGE_
REMINDER

Y Special Pledge
Reminder Letter

SPECIAL_GIFT N Special Gift
Acknowledgement

MAILING_LABEL N Mailing Label PL

DCSN N Decision letters

MAJOR_GIFT N Major Gift
Acknowledgement

CORP_GIFT_ACKN Y Corporate Gift
Acknowledgement

FOUNDATION_
ACKN

Y Foundation Gift
Ackn Letter

©2018 Ellucian. Confidential & Proprietary 292

System-Required Data

GTVLETR Letter Process Letter Validation Table

Code Duplicate Description Print Command AlternateLetter
Code

FOUN_PLDG_ACKN Y Foundation
Pledge Ackn
Letter

ANNUAL_FND_
ACKN

Y Annual Fund Gift
Ackn Letter

RECEIPT Y Gift Receipt

FA_AWRD_W_COST Y FA Award Letter
with Costs

RESEARCH_
PROFIL

Y Prospect
Research Profile

WKBOOKLTR Y Sample letter for
G01C

ADM_APPL_ACKN N Admissions
Application Ackn

INQUIRY_THANKS Y Thank you ltr all
inq types

INF_REQ Y Information
Request Letter

DUES_ACKNOW Y Dues
Acknowledgement

A/D_ACK_
SPECIAL

MEMBER_CARD Y Membership Card

MEMB_DUES_ACK Y Sample
Membership Dues
Letter

MEMBER_
REMINDER

Y Membership
Reminder Letter

MEMBER_RENEWAL Y Membership
Renewal Letter

MEMBER_RENEW_3 Y Membership 3rd
Party Renewal

INVITATION Y Invitation Letter

FA_TRACKING Y Missing Inform.
Letter -FINAID

AD_ACK_SPECIAL N Acknowledgement
of Special Gift

AD_ACK_TWO

©2018 Ellucian. Confidential & Proprietary 293

System-Required Data

GTVLETR Letter Process Letter Validation Table

Code Duplicate Description Print Command AlternateLetter
Code

AD_ACK_TWO Y Second Special
Ackn of Gifts

AD_ACK_GIFTS Y Gift
Acknowledgement
Letter

AD_QUIK_RECPT Y Quick On line Gift
Receipt

ADM_CHKL N Admissions
Checklist Letter

ADM_INT_1 N Admissions
Interview 1 Letter

ADM_FA_
INTEREST

N Financial Aid
Interest Letter

T Y t

TEST Y t

HOUSING Y Housing
Information Letter

STEW_STUDENT Y Stewardship
Letter to Student

STEW_DESG_ID Y Letter to
Designation ID

COB_PCRNOTF_
18M

Y Cobra 18 Month
Notification

COB_PCRNOTF_
36M

Y Cobra 36 Month
Notification

COB_PCRLTRS_
ENR

Y Cobra Enrollment
End Notices

COB_PCRLTRS_
LAT

Y Cobra Late
Notices

COB_PCRLTRS_
TER

Y Cobra Termination
Notices

COB_PCRLTRS_
PEX

Y Cobra Pre-
Expiration Notices

©2018 Ellucian. Confidential & Proprietary 294

System-Required Data

GTVLFST Learner Field of Study Type Validation Table

MAJOR Major

MINOR Minor

CONCENTRATION Concentration

GTVMTYP Meeting Type Validation Form

CLAS Classroom

GTVOBJT VBS Object Code Validation Table

FORM Oracle Forms module

JOBS Job Submission object

MENU Menu object

MESSAGE Menu Message object

QUICKFLOW QuickFlow object

DLL Dynamically Linked Library

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

STU_SAL Student Salutation Student Name, Addr, ID
followed by ‘Dear xx,’

LABELDT Define tables for Labels Header paragraph containing
define tables and invokes table
1.

LABELS Finaid label body Body for labels

AWARD Body of Finaid Award Letter contains everything

APPADDR Student’s Name and Address From the Student’s Current
Financial Aid Application

FA_NP New page of letter Start each letter at new page.

AWARDS Award Letter - Award Amounts Award letter amount per term.

AWRDCLS Award Letter Closing Award letter closing with
Sincerely, name and title of
financial aid officer.

AWRDCST Award Letter - Costs Award letter costs,
contributions, outside resources
(with totals) and need

©2018 Ellucian. Confidential & Proprietary 295

System-Required Data

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

AWRDFAT Award Letter - FAT
Requirement

Financial Aid Transcript
Requirements for Award Letter

AWRDHDR Award Letter Heading Award Letter Heading

AWRDINT Award Letter Introduction Award letter introduction with
aid year desc

AWRDREQ Award Letter - Requirements Award letter requirements

AWRD_DT Table Definitions for Award Table Definitions for Financial
Aid Award Letter

AWRD_NP New Page for Award Letter New Page with #RR for Award
Letter

AWRD_TE Table End for Award Letter Table End for Financial Aid
Award Letter

BASIC basic constituent info

GURADDR Person Name/Address Prints the person’s name and
address on the right margin.

GURINST Institution Name/Address Prints the institution address on
the right margin of the page.

SRRCLOS Recruiting Closing Prints the titles of the person
defined by the initial code.

SRRPRES Presidential Greeting Paragraph with presidential
greeting message.

SRRINT1 Interview One Follow-up Paragraph with Interview One
Message.

SRRINT2 Interview Two Follow-up Paragraph with Interview Two
Message.

SRRCNN1 College Night Follow-up Paragraph with College Night
Message.

GURCLOS Closing Prints “Sincerely” and spacing
on the bottom of the page.

GURLABL Mailing Label Name/Address Paragraph with name and
address to be used as mailing
label.

CALCVAR Calculated Variables Calculated Variables in
Financial Aid Award Letter

FADIR Financial Aid Director Financial Aid Director’s Name

©2018 Ellucian. Confidential & Proprietary 296

System-Required Data

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

FA_HEDR Financial Aid Letter Header Header for Financial Aid
Tracking Letter

FA_SALU Financial Aid Salutation Financial Aid Salutation
Paragraph

FUNDMSG Message Text for Funds Message text associated with
selected fund codes.

GURSALU Salutation Prints the date on right margin
and “Dear xx” on the left
margin.

INAME Name, address of Institution Institution Name and Address
printed in the center of the
letter, 1 line per address field
except city/state/zip

TABLE1 Invoke Table 1 Invoke Table 1 in Financial Aid
Award Letter

TRACK12 Tracking Paragraph w. Msgs Tracking Paragraph using
messages from RORMESG
table

LABEL File Labels Internal File labels

MLABEL Mailing Label - Name / Address Paragraph with name and
address to be used as a mailing
label

AK_RCPT A/D Gift Ack. Receipt Alumni/Development gift
acknowledgement receipt.

TRACK Financial Aid Req. Tracking Body of Financial Aid
Requirements Tracking Letter

TRCK_DT Table Definitions for Tracking Table Definitions for Financial
Aid Tracking Letter

RESEARC info from prospect research

ACK_TAB Ack tables 1-3 Gift Acknowledgement letter
table definition.

AKGBODY Alumni/Dev ack gift body Gift acknowledgement thank
you with amount, campaigns.

ANAMEAD Alumni Ack Const. addr name Acknowledgment address
name for constituent.

©2018 Ellucian. Confidential & Proprietary 297

System-Required Data

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

ANAMESL A/D Ack. first name salutation Alumni Development
name salutation for
acknowledgements.

AORGNNM Alumni Ack org addr name Acknowledgement address
name for organization.

AORGNSL A/D Ack. orgn. name salutation Alumni Development org
primary name salutation for
acknowledgements.

APREFAD Alumni Ack preferred address Preferred address type from
constituent form.

AKGCLAS Alumni/Dev ack Class
paragraph

Gift acknowledgement
preferred class reference.

A_ETAB End table

A_ITAB1 Invoke table 1 Alumni Invoke table 1.

SIGN Signature block Prints Sincerely, name, and title
for initials used with letter

AKGSIGN Alumni/Dev ack signature Gift acknowledgement
signature

AK_RAMT A/D Gift Ack. Receipt amount Alumni/Development gift
acknowledgement receipt amt,
date, gift number.

LTRDATE Letter Date

TOPPAGE Top of Page

ACPT_TE Ends tables for Acceptance End table commands for
acceptance letters

CHKLLST List of Checklist items Lists each checklist items and
it received date after body of
letter

INFADDR Informal name, address, & salut Prints the name, street, city,
state, zip and salutation without
a title (i.e. Mr., Dr.)

INQUIRY Body of the Inquiry thanks ltr Prints the body & closing of the
Inquiry_thanks letter with use of
most recruiting variables

ADMACKL Admissions Application Ackl Admissions Application
Acknowledgement, including
missing Checklist Items, if any

©2018 Ellucian. Confidential & Proprietary 298

System-Required Data

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

FRMADDR Formal Name, Address & Sal Prints the formal name with
prefix and suffix, full address
and salutation

INADDRS Institution Name & address Prints and centers the
institution name, address, &
phone #

ACCEPT Admissions Acceptance Para Body of the Admissions
Acceptance letter

TB_RECR Table for Recruiting Letter Table to Indent Institution Name
and Signature Variable

CLOSING Admissions/Recruiting Closing Prints Sincerely, name, and title
for initials

INFOREQ Information Request Body of information request
letter

GURPERS Person Name/Address Prints the persons name and
address on the left margin of
the page.

WKBOOK1 Workbook Para 1 (Inside Addr) This is the first paragraph
used in the Letter Generation
Textbook. Notice that this
long comment scrolls. The
paragraph includes today’s
date, name and address. It
includes examples of the use of
the ^IFNULL command.

ACPT_DT Table definitions for Accept All table definitions used for
Acceptance

OPENHOU Body of the Open House Letter Prints the body of the Open
House Invitation Letter

HEADER Use as 1st Paragraph Forces new page. Prevents
page creep.

CLOSE Sharon Weinberg Signature Includes skip after body, closing
and signature

APPOINT Recruiting Appointment Letter Includes appointment type, date
and times.

DUE_ACK Dues Acknowledgment Body

DUE_TAB Dues Acknowledgment Tables

MEMB_CD Membership Card Paragraph

©2018 Ellucian. Confidential & Proprietary 299

System-Required Data

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

MEMB_TB Membership Define Tables

MEM_3TB Renewal Letter -3rd Party Tabl Tables for 3rd Party Renewal
Letter

CHKLBDY Admissions Checklist Body of Admissions Checklist
letter

MEM_REM Reminder Letter Paragraph

MEM_REN Renewal Letter Paragraph

MEM_RN3 Renewal Letter - 3rd Party

ACK_TDF Table Definitions for Gift Ack Gift Acknowledgement letter
table definition.

ACK_NPG New Page Command

ACK_LIN Line Count for Page

ACK_DTE Letter Date

ACK_NAD Name and Address for Ack. Person or Org Name and
Address

ACK_SAL Person/Org Salutations Person or organization
salutations for
acknowledgement/receipt

ACK_BDY Body of Acknowledgement
Letter

INVITE Invitation for a Function

HEADDTE Letter Date Prints current date on left side
of page

NEWPAGE New page for letter Start each letter at new page

WKBOOK2 Workbook Para 2 (Inf Sal) Workbook paragraph 2, which
contains an informal salutation
followed by a comma.

WKBOOK3 Workbook Para 3 (Person Verf) Workbook paragraph 3, which
contains the body of the letter
(current Id, gender and marital
status).

ENCL Enclosures Paragraph

T t

©2018 Ellucian. Confidential & Proprietary 300

System-Required Data

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

MNYROOM More than 1 Roommate Info Paragraph to Print Address/
Phone Info for More than 1
Roommate

MANYALT Many Roommates Alternate
Para

Alternate Paragraph Formatting
for Printing Many Roommates
Info

ONERALT One Roommate Alternate Para Alternate Paragraph Formatting
for Printing One Roommate Info

CLSHOUS Closing for Housing Letter Closing for Housing Letter

SNGLERM Single Room Housing Info Paragraph to Print Single Room
Housing Information

ONEROOM One Roommate Housing Info Paragraph to Print Address/
Phone Info for One Roommate
Only

INTHOUS Introduction to Housing Letter Introduction to Housing Letter

TB_HOUS Table for Housing Letter Table Definitions for Housing
Letter

STEW2 Stewardship to student Stewardship letter to student

STEW1 Stewardship to Desg ID Stewardship letter to
designation ID

COB_TAB Cobra Tables

COB_NPG Cobra New Page

COB_HDR Cobra Header

COB_NTA Cobra Notification Letr Para 1

COB_NTB Cobra Notification Letr Para 2

COB_NTC Cobra Notification Letr Para 3

COB_NTD Cobra Notification Letr Para 4

COB_NTE Cobra Notification Letr Para 5

COB_NTF Cobra Notification Letr Para 6

COB_SSD Cobra SS Procedure

COB_SSP Cobra SS Procedure

COB_ELE Cobra Election form

COB_ENR Cobra Enrollment End Notices

©2018 Ellucian. Confidential & Proprietary 301

System-Required Data

GTVPARA - Letter Process Paragraph Validation Table

Code Description Comment

COB_LAT Cobra Late Notices

COB_TER Cobra Termination Notices

COB_PEX Cobra Pre-Expiration Notices

COB_HLP Cobra Admin Contact Address

GTVPARS Partition Code Validation Table

Code Description Scheduler Number Campus Code

0 Default Partition 0

GTVPROC Process Name Validation Table

WEBCCEPRTREQ Web Credit Card Enrollment
Verification Charge Process

WEBCCREGFEES Web Credit Card Registration
Fees Process

WEBCCAPPFEES Web Credit Card Application
Fees Process

WEBCCGRADAPP Web Credit Card Graduation
Application Process

GTVRRAC Regulatory Race Validation Table

1 American Indian or Alaskan
Native

2 Asian

3 Black or African American

4 Native Hawaiian and Other
Pacific Islander

5 White

For all entries above, Data Origin is null.

GTVSCHS Scheduling Status Code Validation Form

NSM Class needs a room
assignment.

1SM Class needs a room
assignment and has a preferred

©2018 Ellucian. Confidential & Proprietary 302

System-Required Data

GTVSCHS Scheduling Status Code Validation Form
first choice room indicated in
the Room Name field. This
code limits the initial pool
of candidate rooms in the
assignment algorithm.

WSM Class needs a room
assignment and must be
assigned with the preceding
NSM or 1SM record to the
same room at the same time
(cross-listed).

RSM Class is related to the
preceding NSM or 1SM record
and must be assigned to the
same room but not at the same
days/time.

NXM Class needs a room
assignment and can share a
room with another class whose
times overlap with it (can be
doubled-booked).

1XM Class needs a room
assignment, has a preferred
first choice room indicated in
the Room Name field, and can
share a room with another class
whose times overlap with it (can
be double-booked).

RXM Class is related to the previous
NXM or 1XM record and must
be assigned to the same room
at the same or overlapping
times.

ASM Class has a room assignment
that was made manually or in
another system, such as the
student information system.

AXM Class has a room assignment
that was made manually or in
another system, and the class
time span overlaps part of all of
the time span of another class
assigned to the same room
(double-booking or intentional
conflict).

©2018 Ellucian. Confidential & Proprietary 303

System-Required Data

GTVSCHS Scheduling Status Code Validation Form

HSM This is a set of home cross-
listed classes pre-assigned to
the same room at identical days
and times.

VSM This is a set of visitor cross-
listed classes pre-assigned to
the same room at identical days
and times.

5SM Schedule25 assigned the class
a room during a previous run.

5XM Schedule25 assigned the class
a room, and it is double-booked
with another class.

GTVSQPR SQL Process Code Validation Table

Code Description Start Date End Date

CARDHOLDER_ROLES Cardholder roles 19-Oct-05

HOUSING_
ELIGIBILITY

Housing Integration,
Eligibility Roles

19-Oct-05

INTCOMP Integration roles 27-Oct-05

SEVIS SEVIS Processing 2-Oct-03

GTVSQRU SQL Rule Code Validation Table

Code Description Start Date End Date

ALUMNUS Alumnus Role 19-Oct-05

EMPLOYEE Employee Role 19-Oct-05

STUDENT Student Role 19-Oct-05

STUDENT_ENROLLED Student with enrollment
in given term

19-Oct-05

ALUMNI Alumni Role 27-Oct-05

FACULTY Faculty Role 27-Oct-05

FRIENDS Friend Role 27-Oct-05

FINANCE Finance Role 27-Oct-05

DEVELOPMENTOFFICER Development Officer
Role

27-Oct-05

PROSPECT Prospect Role 27-Oct-05

©2018 Ellucian. Confidential & Proprietary 304

System-Required Data

GTVSQRU SQL Rule Code Validation Table

Code Description Start Date End Date

APPLICANT Applicant Role 27-Oct-05

INTACCEPT Institution Accept Role 27-Oct-05

APPACCEPT Applicant Accept Role 27-Oct-05

IAM_GOBEACC_RULE GOBEACC attributes
for IAM

GTVSVAP SEVIS Auto-populate Code Validation Table

GOBSEVS_VTYP_CODE Visa type code

GOBSEVS_BIRTH_NATN_CODE Birth nation code

GOBSEVS_LEGAL_NATN_CODE Legal nation code

GOBSEVS_PROGRAM_BEGIN_
DATE

Program begin date

GOBSEVS_PROGRAM_END_
DATE

Program end date

GOBSEVS_PROGRAM_ENROLL_
DATE

Program enroll date

GOBSEVS_ACADEMIC_TERM_
MONTHS

Academic term in months

GOBSEVS_TUITION_EXPENSE Tuition expense

GOBSEVS_PERSONAL_FUNDS Personal funds

GOBSEVS_SESSION_START_
DATE

Session start date

GOBSEVS_SESSION_END_
DATE

Session end date

GOBSEVS_SVEL_CODE Education level code

GOBSEVS_SVEL_COMMENT Education level comment

GOBSEVS_MAJR_CODE Major code

GOBSEVS_STUDY_LENGTH Length of study in months

GOBSEVS_LIVING_EXPENSES Living expenses

GOBSEVS_SVFT_CODE Drop below full-time status
code

GOBSEVS_AUTH_START_DATE Authorized start date

©2018 Ellucian. Confidential & Proprietary 305

System-Required Data

GTVSVAP SEVIS Auto-populate Code Validation Table

GOBSEVS_COMPLETION_
REMARKS

Completion remarks

GOBSEVS_NEW_PROGRAM_
END_DATE

New program end date

GOBSEVS_DA_PROGRAM_
END_DATE

Deferred attendance program
end date

GOBSEVS_DA_PROGRAM_
START_DATE

Deferred attendance program
start date

GOBSEVS_DISC_ACTION_TEXT Disciplinary action comment

GOBSEVS_EXTEND_END_DATE Extension end date

GOBSEVS_SVCR_CODE Creation reason code

GOBSEVS_SVCR_COMMENT Creation reason comment

GOBSEVS_SVTR_CODE Termination code

GOBSEVS_TERMINATE_DATE Termination date

GOBSEVS_OTHER_INFRACT_
COMMENT

Infraction comment

GOBSEVS_SVEP_CODE End program code

GOBSEVS_END_PROGRAM_
EFF_DATE

End program effective date

GOBSEVS_EV_FORM_NUMBER Exchange Visitor form number

GOBSEVS_SVRP_CODE Reprint reason code

GOBSEVS_REPRINT_REASON_
COMMENT

Reprint reason comment

GOBSEVS_PRINT_REQUEST_
IND

Print request indicator

GOBSEVS_DEPENDENT_
EXPENSES

Dependent expenses

GOBSEVS_OTHER_FUNDS Other funds

GOBSEVS_OTHER_FUNDS_
COMMENT

Other funds comment

GOBSEVS_OTHER_EXPENSES Other expenses

GOBSEVS_OTHER_EXP_COMMENTOther expenses comment

GOBSEVS_AUTH_END_DATE Authorization end date

GOBSEVS_NEW_PROGRAM_
START_ DATE

Program initial start date for
continuing EV

©2018 Ellucian. Confidential & Proprietary 306

System-Required Data

GTVSVAP SEVIS Auto-populate Code Validation Table

GOBSEVS_SVPC_CODE Program code

GOBSEVS_SVSC_CODE Subject code

GOBSEVS_SVSC_COMMENT Subject code comment

GOBSEVS_COMMUTER_IND Commuter indicator

GOBSEVS_ENG_PROF_
REQ_IND

English proficiency required
indicator

GOBSEVS_ENG_PROF_
MET_IND

English proficiency met
indicator

GOBSEVS_ENG_PROF_REASON English proficiency comment

GOBSEVS_CRIMINAL_
CONVICT_IND

Criminal conviction indicator

GOBSEVS_ADMISSION_
NUMBER

Admission number

GOBSEVS_DRIVERS_LIC_
NUMBER

DriverNULLs license number

GOBSEVS_STAT_CODE_
DRIVERS_LIC

DriverNULLs license state of
issue

GOBSEVS_TIN Taxpayer identification number

GOBSEVS_MAJR_CODE_2 Secondary major code

GOBSEVS_MAJR_CODE_MINR Minor code

GOBSEVS_SCHOOL_FUNDS School funds

GOBSEVS_SCHOOL_FUNDS_
COMMENT

School funds comment

GOBSEVS_EMPLOYMENT_
FUNDS

Employment funds

GOBSEVS_FUNDING_COMMENT Funding comment

GOBSEVS_SVFT_COMMENT Drop below fill time status
comment

GOBSEVS_SVEP_COMMENT End program comment

GOBSEVS_DA_COMMENT Deferred attendance comment

GOBSEVS_PASSPORT_NUMBER Passport number

GOBSEVS_NATN_CODE_
PASSPORT

Country issuing passport

GOBSEVS_PASSPORT_
EXPIRE_DATE

Passport expiry

©2018 Ellucian. Confidential & Proprietary 307

System-Required Data

GTVSVAP SEVIS Auto-populate Code Validation Table

GOBSEVS_VISA_NUMBER Visa number

GOBSEVS_SVCP_CODE Consular post code

GOBSEVS_VISA_EXPIRE_
DATE

Visa expiry

GOBSEVS_PENT_CODE Port of entry code

GOBSEVS_PENT_COMMENT Port of entry comment

GOBSEVS_ENTRY_DATE Entry date

GOBSEVS_RFC_COMMENT Resume full course comment

GOBSEVS_EDIT_
PROGRAM_COMMENT

Edit program comment

GOBSEVS_PROGRAM_
SPONSOR_FUNDS

Program sponsor funds

GOBSEVS_GOVT_ORG_FUNDS Government organization 1
funds

GOBSEVS_SVGO_CODE Government organization 1
code

GOBSEVS_GOVT_ORG_
FUNDS_2

Government organization 2
funds

GOBSEVS_SVGO_CODE_2 Government organization 2
code

GOBSEVS_INTL_ORG_FUNDS International organization 1
funds

GOBSEVS_SVIO_CODE International organization 1
code

GOBSEVS_INTL_ORG_
FUNDS_2

International organization 2
funds

GOBSEVS_SVIO_CODE_2 International organization 2
code

GOBSEVS_EV_GOVT_FUNDS Funds from the EV’s
government

GOBSEVS_BINATION_FUNDS Binational funds

GOBSEVS_OTHER_ORG_FUNDS Other organization funds

GOBSEVS_PROGRAM_
START_IND

Program start indicator

GOBSEVS_EXTEND_PROGRAM_
 COMMENT

Comment on program
extension

©2018 Ellucian. Confidential & Proprietary 308

System-Required Data

GTVSVAP SEVIS Auto-populate Code Validation Table

GOBSEVS_AMEND_PROGRAM_
COMMENT

Comment on program
amendment

GOBSEVS_MATRICULATION_
CDE

Matriculation code

GOBSEVS_BIRTH_CITY Birth city

GOBSEVS_EDIT_BIO_
COMMENT

Edit biographical data comment

GOBSEVS_NATN_CODE_
PERM_RES

Country of permanent
residency

GOBSEVS_FIN_SUPPORT_
COMMENT

Financial support comment

GOBSEVS_SVIT_CODE Infraction type code

GOBSEVS_SVCC_CODE Category code

For all entries above, Start Date is 2-Oct-03 and End Date is
null.

GTVSVBA SEVIS Business Action Code Validation Table

Code Description Procedure Name Start Date End Date

CREATE_
STUDENT

Create student for
SEVIS processing

goksvsq.
p_create_
student

2-Oct-03

CREATE_EV Create Exchange
Visitor for SEVIS
processing

goksvsq.
p_create_ev

2-Oct-03

GTVSVCC SEVIS Exchange Visitor Program Category Code Validation
Table

1A Student Secondary

1B Student Associate

1C Student Bachelors

1D Student Masters

1E Student Doctorate

1F Student Non-degree

2A Trainee (specialty)

2B Trainee (non-specialty)

©2018 Ellucian. Confidential & Proprietary 309

System-Required Data

GTVSVCC SEVIS Exchange Visitor Program Category Code Validation
Table

3 Teacher

4 Professor

5 International Visitor

6 Alien Physician

7 Government Visitor

8 Research Scholar

9 Short-term scholar

10 Specialist

11 Camp Counselor

12 Summer work/travel

13 Aupair

GTVSVCR - SEVIS Creation Reason Code Validation Table

Code Description Usage Indicator

S Change of Status 1

I Initial 1

C INAC 5/05 Continued
Attendance

1

T INAC 5/05 Transfer 1

D INAC 5/05 Dependent 1

R INAC 5/05 Reinstatement 1

O INAC 5/05 Other 1

1 INACT 1/03--Begin New
Program

2

2 INACT 1/03--Continuing EV 2

3 INACT 1/03Transffrom non-
SEVIS

2

4 INACT 1/03--Reinstatement 2

CONT INAC 5/05 Continuing 2

NEW New 2

©2018 Ellucian. Confidential & Proprietary 310

System-Required Data

GTVSVDT SEVIS Dependent Termination Code Validation Table

1 Conviction of a Crime

2 Death

3 Child Over 21

4 Divorce

5 Unauthorized Employment

6 Principal Status Terminated

7 INAC 5/5 271 Days Post
ProgEnd

8 INAC 5/5 271 Days Post
PrinEnd

9 Other

10 Principal Status Completed

11 INAC 5/5 Terminated J-1 Visa

12 INAC 5/5 Completed J-1 Visa

GTVSVEL SEVIS Educational Level Code Validation Table

1 Primary

2 Secondary

3 Associate

4 Bachelors

5 Masters

6 Doctorate

7 Language Training

8 High School

9 Flight School

10 Other Vocational School

11 Other

GTVSVEP SEVIS End EV Program Reason Code Validation Table

COMP Completed

1 INACT 1/03Withdrawal From
Prog

©2018 Ellucian. Confidential & Proprietary 311

System-Required Data

GTVSVEP SEVIS End EV Program Reason Code Validation Table

2 INACT 1/03 Can’t Cont Prog

3 INACT 1/03 Death

4 INACT 1/03Prog Comp Pre End
Dt

WFP Withdrawal from Program

ICP Inability to Continue Program

DOE Death of EV

PCP Prog Complete Before End
Date

NOS INAC 5/05 No Show

CCHG INAC 5/05 Cancel-Chg of
Status

CHG INAC 5/05 Change of Status

DCHG INAC 5/05 Denied-Chg of
Status

GTVSVFT SEVIS Drop Below Full Time Reason Code Validation Table

1 Illness/Medical Condition

2 Difficulty with English

3 Difficulty with Reading

4 Not Familiar with U.S.Teaching

5 Improper Level Placement

6 Will Complete within Term

7 Part-Time Commuter Student

GTVSVGO SEVIS Governmental Organization Code Validation Table

DOJ Dept of Justice

ACT Action

AID Agency For Intl Development

BBG Broadcasting Board of
Governor

DOC Dept of Commerce

DOD Dept of Defense

©2018 Ellucian. Confidential & Proprietary 312

System-Required Data

GTVSVGO SEVIS Governmental Organization Code Validation Table

DOE Dept of Energy

DOED Dept of Education

DOI Dept of Interior

DOL Dept of Labor

DOS Dept of State

DOT Dept of Transportation

EPA Environmental Protection Ag

EXIM Export-Import Bank

GAO General Accounting Agency

HHS Health and Human Services

HMC Holocaust Memorial Council

HUD Housing and Urban
Development

LOC Library of Congress

NASA NASA

NDH Nat Endowment for Humanities

NEA Nat Endowment for the Arts

NSF Nat Science Foundation

OTHER Other

SI Smithsonian Institution

TREAS Dept of Treasury

USDA Dept of Agriculture

USIP US Institute of Peace

VA Dept of Veterans Affairs

GTVSVIO SEVIS International Organization Code Validation Table

ECLA UN Econ Comm. Latin Am/
Carrib

ECE UN Economic Commission
Europe

ECA UN Economic Commission
Africa

©2018 Ellucian. Confidential & Proprietary 313

System-Required Data

GTVSVIO SEVIS International Organization Code Validation Table

ECLAC INAC 5/05 Eco Com Latin Am/
Car

ECOSOC UN Economic and Social
Council

EEC European Economic
Community

ESCAP UN Econ Comm Asia/Far East

FAO UN Food/Agriculture Org

IAEA Intl Atomic Energy Agency

ICAO Intl Civil Aviation Org

ILO Intl Labor Organization

IMF Intl Monetary Fund

IMO Intl Maritime Organization

ITU Intl Telecomm Union

NATO North Atlantic Treaty Org

OAS Org of American States

OAU Org of African Unity

OECD Org of Econ Coop. and
Develop.

OTHER Other

PAHO Pan Amer Health Org

UN United Nations

UNCTAD UN Conf of Trade and Develop

UNDP UN Development Program

UNESCO UN Ed, Scient and Culture Org

UNICEF UN Children’s Fund

UNIDO UN Industrial Devel Org

WB World Bank

WHO World Health Organization

WMO World Meteorological Org

©2018 Ellucian. Confidential & Proprietary 314

System-Required Data

GTVSVIT SEVIS Infraction Type Code Validation Table

EXT Failure to extend DS-2019 in
timely manner.

CON INAC 5/05 Failure to conclude
transfer of program.

REC Failure to receive RO/ARO
approval before accepting
payment

OTH Other

GTVSVPC SEVIS Position Code Validation Table

110 Central Government Group

111 Head of Government

112 Ministerial Level Official

113 Executive Level Official

114 Civil Service Employee

115 Professionals and Scientists

116 Legislator/Central Government

117 Judges/Central Government

118 Manager/State Enterprise

119 Central Government Other

120 State, Reg,Prov Govt Group

121 Governor/Chief of Region

122 Senior Head of Reg Dept

123 Exec Level Reg Official

124 Civil Service/Regional Govt

125 Prof and Scientist/Regional

126 Regional Legislator

127 Regional Judge

128 Regional Manager

129 Regional Govt Other

130 City/Town Government Group

131 Mayor/City Manager

©2018 Ellucian. Confidential & Proprietary 315

System-Required Data

GTVSVPC SEVIS Position Code Validation Table

132 Head of City Dept

133 Executive Level City Official

134 Civil Service/City Govt

135 Prof and Scientist/City

136 City Legislator

137 City Judge

138 Manager, City Enterprise

139 City Government Other

140 International Organization

141 Head of International Org

142 Senior Official Intl Org

143 Intl Org Employee

210 University Level Group

211 University President

212 University Admin Staff

213 Teaching Staff/University

214 University Graduate Students

215 Undergraduate Students/Univ

216 Medical School Students

217 Other Professional Students

218 Post Graduate Medical Trainee

219 University, Other

220 Secondary School Group

221 Secondary School Principal

222 Secondary School Teacher

223 Secondary School Student

229 Secondary School, Other

230 Elementary School Group

231 Elementary Principal/Teacher

239 Elementary School, Other

240 Special School Group

©2018 Ellucian. Confidential & Proprietary 316

System-Required Data

GTVSVPC SEVIS Position Code Validation Table

241 Special School Head

242 Special School Teacher

249 Special School, Other

310 Private Business Group

311 Private Business Entrepreneur

312 Corporate Executive

313 Manager/Private Business

314 Employee/Private Business

315 Professional/Scientist, Bus.

319 Private Business, Other

320 Self-Employed Group

321 Self-Employed (Legal)

322 Self-Employed (Medical)

323 Self-Employed (Tech)

329 Self-Employed (Other)

330 Independent Organization
Group

331 Dir Instit/Corp/Hospital

332 Mgr-Exec Empl by Instit/Corp

334 Employee Independent Inst/
Corp

335 Prof/Scientist Instit/Corp

339 Independent Org, Other

340 Agriculture Group

342 Agricultural Executive

341 Agricultural Entrepreneur

343 Agricultural Manager

344 Agricultural Employee

345 Agriculture Prof/Scientist

349 Agriculture, Other

350 Religion Group

©2018 Ellucian. Confidential & Proprietary 317

System-Required Data

GTVSVPC SEVIS Position Code Validation Table

351 Minister of Religion

352 Religious Order Member

353 Theologian

410 Arts Group

411 Artist (Graphic Arts)

412 Author (Playwright,Poet)

413 Stage/Film Actor

414 Film/Stage Producer

415 Composer/Musician

419 Arts, Other

420 Sports Group

421 Athlete

422 Coach

429 Sports, Other

510 Labor Union Group

512 Labor Union Official

511 Labor Union Head

513 Labor Union, Other

520 Labor Union Ministry Group

521 Labor Minister or Lab Ag Head

522 Senior Ministerial Official

523 Ministerial Employee

529 Ministry of Labor, Other

530 Labor Experts Academia Group

531 Deleted--See 213

539 Labor Experts Academia, Other

540 Labor Organization Group

541 Head of Labor Organization

542 Labor Organization Employee

610 Electronic Media Group

611 Head of TV/Radio Station

©2018 Ellucian. Confidential & Proprietary 318

System-Required Data

GTVSVPC SEVIS Position Code Validation Table

612 Radio/TV Journalist

613 Electronic Media Technician

619 Electronic Media, Other

620 Print Media Group

621 Editor/Publisher

622 Journalist

623 Tech in Print Media Field

629 Print Media, Other

630 Film as News Media Group

631 Film Maker

639 Film as News Media, Other

710 Opposition Leader

720 Opposition Leader (Legislator)

730 Former Political Official

790 Important Political Figure

800 Military

900 Other

GTVSVTR - SEVIS Termination Reason Code Validation Table

Code Description Usage Indicator

1 Unauthorized Withdrawal 1

2 Death 1

3 Unauthorized Employment 1

4 Drop Below FT Course of Study 1

5 Full Course Time Exceeded 1

6 Change of Nonimmigrant
Status

1

7 Nonimmigrant Stat Chnge
Denied

1

8 Expulsion 1

9 Suspension 1

10 Absent from Country for 5 Mos. 1

©2018 Ellucian. Confidential & Proprietary 319

System-Required Data

GTVSVTR - SEVIS Termination Reason Code Validation Table

Code Description Usage Indicator

11 Failure to Enroll 1

12 Costs Exceed Resources 1

13 Transfer Student a No Show 1

14 Denied Transfer 1

15 Extension Denied 1

16 Failing to Maintain Status 1

17 Violation of Change of Status 1

18 Change of Status Denied 1

19 Change of Status Withdrawn 1

20 Change of Status Approved 1

21 Transfer Withdrawn 1

22 No Show-Manual Termination 1

23 Authorized Early Withdrawal 1

24 No Show-System Termination 1

25 School Withdrawn 1

1 INACT 1/03 Fail to Pursue Prog 2

2 INACT 1/03Fail to Maint Ins 2

3 INACT 1/03 Convict of a Crime 2

4 INACT 1/03 Disciplinary Action 2

5 INACT 1/03 Unauth
Employment

2

6 INACT 1/03 Violat Spons Rules 2

7 INACT 1/03 Violating Prog
Regs

2

8 INACT 1/03 Fail to Main FT 2

9 INACT 1/03 Involuntary Susp 2

CONVIC Conviction of a Crime 2

DISCIP Disciplinary action 2

ENGEMP Unauthorized employment 2

FALACT Fail to Pursue EV Prog Activit 2

©2018 Ellucian. Confidential & Proprietary 320

System-Required Data

GTVSVTR - SEVIS Termination Reason Code Validation Table

Code Description Usage Indicator

FALADD Fail to submit address change 2

FALINS Fail to maint health Insurance 2

FALSTD Fail to maint full course 2

INVSUS Involuntary suspension 2

OTHER Other 2

VIOEXV Violating EV program regs 2

VIOSPN Violating sponsor rules 2

GTVSVTS Validation Entries for SEVIS Transmittal Status Code Table

C Processing Complete

P Pending Response from SEVIS

N No action required

M Manual - Adjudicated event

W Waiting for Batch Transmittal

X Not Sent, User Decision

R Returned with error

GTVSYSI System Indicator Validation Table

A Alumni

G General

F Finance

R Financial Aid

S Student

T Accounts Receivable

C Courts

H Human Resources

M Micro-Faids Interface

U Utilities

N Position Control

B Property Tax

©2018 Ellucian. Confidential & Proprietary 321

System-Required Data

GTVSYSI System Indicator Validation Table

D Cash Receipts

L Occupational Tax and License

X Records Indexing

IC Integration Components

E Banner XtenderSolutions

TM Translation Manager

FW Finance Self-Service

GW Web General

VR Voice Response

AW Advancement Self-Service

SW Student Self-Service

PW Employee Self-Service

LW Faculty/Advisor Self-Service

IF Kiosk (Information Access)

LC Luminis Channels for Banner

GUASADM

Capture Table

Capture Rule Capture Columns

GOREMAL GOREMAL_EMAIL_ADDRESS
GOREMAL_PREFERRED_IND
GOREMAL_STATUS_IND

GORIROL GORIROL_ROLE
GORIROL_ROLE_GROUP

SPBPERS SPBPERS_BIRTH_DATE
SPBPERS_LEGAL_NAME
SPBPERS_NAME_PREFIX
SPBPERS_NAME_SUFFIX
SPBPERS_PREF_FIRST_NAME
SPBPERS_SEX SPBPERS_SSN

SPRADDR SPRADDR_ATYP_CODE
SPRADDR_CITY
SPRADDR_CNTY_CODE
SPRADDR_NATN_CODE
SPRADDR_STATUS_IND
SPRADDR_STAT_CODE
SPRADDR_STREET_LINE1
SPRADDR_STREET_LINE2

©2018 Ellucian. Confidential & Proprietary 322

System-Required Data

GUASADM

Capture Table

Capture Rule Capture Columns

SPRADDR_STREET_LINE3
SPRADDR_ZIP

SPRIDEN SPRIDEN_CHANGE_IND is
NULL

SPRIDEN_ENTITY_IND IN
(‘P’)

SPRIDEN_CHANGE_IND
SPRIDEN_ENTITY_IND
SPRIDEN_FIRST_NAME
SPRIDEN_LAST_NAME
SPRIDEN_MI

SPRTELE SPRTELE_PHONE_AREA
SPRTELE_PHONE_EXT
SPRTELE_PHONE_NUMBER

GURTPRF - Toolbar and Menu Preference Table

Toolbar Buttons

|69,Workflow Release,wf_release,G
$_WF_BUTTON_PRESSED_TRG;,,414.000,18.000,D,
||70,Workflow Submit,wf_submit,G
$_WF_BUTTON_PRESSED_TRG;,,396.000,18.000,D,
||71,Open Electronic Document,wf_apply,G
$_WF_BUTTON_PRESSED_TRG;,,378.000,18.000,D,
||72,SEM,sem,,,171.000,63.000,E,

 ||73,Banner Help,banner_help,GUAHELP,,144.000,63.000,E,
||74,Internet,internet,,,117.000,63.000,E,
||75,MS Powerpoint,powerpoint,,,99.000,63.000,E,
||76,MS Excel,excel,,

Display
Horizontal
Toolbar

Display Vertical
Toolbar

Display Hint Display Form
Name

Display Release
Number

Y Y Y Y Y

Display
Database
Instance

Display Date
and Time

Display
Required Item
Color

Screen
XPosition

Button X
Position

Display Form
Name

Y Y Y 232 224 N

©2018 Ellucian. Confidential & Proprietary 323

System-Required Data

GURUPRF Personal Preference Table

Group Key String Value

DATA_EXTRACT WIN32COMMON DIRECTORY c:\temp

REPORT WEB DIRECTORY http://
your.report.server/
ows-bin/
rwcgi60.exe?

WEBOUTPUT WEB DIRECTORY http://yourserver.com/
directory/

MENU WIN32COMMON STARTUP_MENU *MENU

DATA_EXTRACT WIN32COMMON MIME_TYPE FILE

LDAP AUTHENTICATION SERVER ldap://
your.ldap.server:port/

LDAP AUTHENTICATION DN DN Name

LDAP AUTHENTICATION BIND_USER Bind user.

LDAP AUTHENTICATION BIND_PASSWORD Bind password.

LDAP SSL LOCATION Wallet Location

LDAP SSL PASSWORD Wallet Password

LDAP SSL MODE Authentication Mode

UI COLOR BUTTON r204g204b153

UI COLOR CANVAS r255g255b255

UI COLOR RECORD r204g204b153

UI COLOR SEPARATOR r204g204b0

UI COLOR SCROLLBAR r204g204b0

UI COLOR CODE_PROMPT r0g0b0

CM LIST FORMS APANAME

APAIDEN

APAWPRS

FOAIDEN

FTMAGCY

FTMFMGR

FTMVEND

GXRBANK

PPAIDEN

©2018 Ellucian. Confidential & Proprietary 324

http://your.report.server/
http://your.report.server/
http://yourserver.com/directory/
http://yourserver.com/directory/

System-Required Data

GURUPRF Personal Preference Table

Group Key String Value
RCRSUSP

STVINFC

SPAIDEN

SAAQUIK

SRAQUIK

SAAEAPS

SRIPREL

SRQMTCH

STVPREL

SHAEDIS

PEAHIRE

PEA1PAY

NOAEPAF

UI ALERT EXIT Y

UI ALERT CONFIDENTIAL Y

UI ALERT DECEASED Y

UI COLOR MESSAGE_CANVAS r255g255b255

UI COLOR LINKS_CANVAS r255g255b255

UI COLOR TREE_CANVAS r255g255b255

UI LINKS MY_INST http://
www.sungardhe.com/

UI LINKS MY_LINK_1DESC Your first personal link
description

UI LINKS MY_LINK_1EVENT Your first personal link
URL

UI LINKS MY_LINK_2DESC Your second personal
link description

UI LINKS MY_LINK_2EVENT Your second personal
link URL

UI LINKS MY_LINK_3DESC Your third personal link
description

UI LINKS MY_LINK_3EVENT Your third personal link
URL

©2018 Ellucian. Confidential & Proprietary 325

http://www.sungardhe.com/
http://www.sungardhe.com/

System-Required Data

GURUPRF Personal Preference Table

Group Key String Value

UI LINKS MY_LINK_4DESC Your fourth personal
link description

UI LINKS MY_LINK_4EVENT Your fourth personal
link URL

UI LINKS MY_LINK_5DESC Your fifth personal link
description

UI LINKS MY_LINK_5EVENT Your fifth personal link
URL

UI LINKS MY_LINK_6DESC Your sixth personal link
description

UI LINKS MY_LINK_6EVENT Your sixth personal link
URL

IMAGE WEB DIRECTORY c:
\YourImageDirectory

REPORT WEB SERVICE YourServiceName

HELP WEB DIRECTORY http://
your.bannerOH.server/
bannerOH/bannerOH

©2018 Ellucian. Confidential & Proprietary 326

http://your.bannerOH.server/bannerOH/bannerOH
http://your.bannerOH.server/bannerOH/bannerOH
http://your.bannerOH.server/bannerOH/bannerOH

Troubleshooting

Troubleshooting
Troubleshooting

See the corresponding chapters of the Banner General User Guide Banner General User Guide for
messages related to Letter Generation, Population Selection, and Job Submission.

The Banner Error and Warning Messages form (GUAERRM) displays messages generated by
APIs. If an error or warning appears in the GUAERRM form, the message was generated by an
API. Each API has technical documentation that might help you identify the source of the problem.
See Chapter 7, “APIs,” for a list of Banner General APIs and instructions on downloading API
documentation.

SQL Trace

An SQL Trace may be performed from within a Banner session. This helps technical support staff
track performance issues so they can be resolved.

When you report a performance problem, the Technical Support representative can ask you to turn
on the SQL Trace feature and repeat your tasks. As you work, SQL Trace statements are written to
a specified directory, where the representative can view them. The statements show all the indexes
that Oracle uses to access data.

To turn on SQL Trace, select the Help pull-down menu on the menu bar, then Technical Support,
and Turn SQL Trace On.

Note: The end user must turn the trace off or exit Banner to stop creating trace statements.

The location of the trace files is determined by the user_dump_dest setting in the init.ora file.

If someone else is creating trace files when you are, you will have to review the files to determine
which were created by your session. The names of the files begin with ora_ and end with the
extension .trc. The names are created automatically by the database.

If your environment is running with the multi-threaded server option, all trace data is written to a
common file. You may want to investigate setting up another database connection in tnsnames.ora
file with the use of (SERVER=DEDICATED) so your trace file is unique and contains only your
session’s data.

Use the Oracle utility program tkprof to format the output of your trace file.

On the Help pull-down menu on the toolbar, Technical Support expands to two options, Turn SQL
Trace On and Turn SQL Trace Off. One or the other will be enabled, depending on if you currently
are using the trace feature. You can invoke the trace at any time in your Banner session. You will
continue to produce trace statements until you turn the trace off or exit Banner.

GUMAPPL.MMB was updated to add the technical menu to the help section. It has the logic to call
routines in the general library to turn the SQL Trace on and off.

Note: If you want to disable the SQL Trace entirely, access the Installation Controls Form
(GUAINST) and clear the SQL Trace Enabled check box.

©2018 Ellucian. Confidential & Proprietary 327

Troubleshooting

Start a SQL Trace in GUAINIT

The General System Global Establishment Form (GUAINIT) allow you to begin a SQL trace from
the time the form is launched, and not just during the Banner session. The command line parameter
START_TRACE is evaluated in the PRE-FORM trigger and will start the SQL trace if it is set to YES.

Capture runtime statistics

The CAPTURE_TIMINGS package provides one location for the capturing of runtime statistics and
the saving of those values to a database table.

There are two procedures:

• SET_TIME copies the value from gokdbms.utility_get_time to the global that is passed as
a parameter.

• SAVE_INFO inserts the value of the parameter into the GURADDL table based on the setting
of the new TIMING parameter. The TIMING parameter causes timing statistics to be captured
at various places in the form and saved to the GURADDL table for use in evaluating the current
form performance. This was implemented to determine the amount of time it takes to execute
different parts of the form. The form sets the starting time after the user has connected to
the database in the PRE-FORM trigger, and then sets the values several more times in the
DO_FORM_CALL (before building the personal menu, before building the product menu, and just
before invoking the menu form). This code is only used through a new command line (URL)
parameter: TIMING=YES.

©2018 Ellucian. Confidential & Proprietary 328

	Technical Reference Manual
	Contents
	Banner Standards
	Naming of Banner objects
	Naming of Client-Developed Items
	Column names
	Application tables (base/repeating)
	Validation tables

	Database programming object naming standards
	The dbprocs directory
	Scripts that create triggers
	Duplicate names
	Scripts that create packages, procedures, and functions
	Line extension products

	Triggers
	Packages
	Cursors
	User-defined types

	Indexes

	Banner constraint naming convention
	Primary keys
	Foreign keys
	Define referential integrity constraints referencing the validation tables
	Define referential integrity constraints for application hierarchy

	Check constraints
	Unique constraints

	Data format recommendations
	Delivered user IDs
	BASELINE and LOCAL User IDs

	Directory structure
	COBOL standards
	Rules
	Standards
	Style

	C Standards
	Rules
	Standards
	Style

	Banner Forms Architecture
	Introduction
	Classes
	Attributes
	Methods
	Objects
	Banner

	The Logical View
	The Superclass G$_FORM_CLASS
	Methods
	Security methods
	PRE and POST methods
	Event methods
	KEY methods
	Specialized methods

	Subclasses
	Subclass G$_VAL_FORM_CLASS
	Subclass G$_APPL_FORM_CLASS
	Subclass G$_INQ_FORM_CLASS

	Inheritance
	A form as an object
	Interaction between two or more forms
	Display bubble help: attribute (Y/N)
	Display form name on title bar: attributes (Y/N)
	Display release number on title bar: attributes (Y/N)
	Display database instance on title bar: attributes (Y/N)

	Key block
	The attributes of G$_KEY_BLOCK_CLASS
	The methods of G$_KEY_BLOCK_CLASS
	The class G$_KEY_BLOCK_CLASS
	Interaction between the key block and other blocks
	The G$_FS_CANVAS_CLASS Class
	The G$_FS_WINDOW_CLASS Class
	Items
	Methods
	The G$_DESC_CLASS Class
	Methods
	The Class G$_ID_CLASS
	Methods
	The Class G$_NAME_CLASS
	Methods
	The Class G$_FF_NAME_CLASS
	The G$_DATE_CLASS Class
	Methods
	The G$_DATETIME_CLASS Class
	The G$_ICON_BTN_CLASS Class
	Methods
	The G$_FLASHLITE_BTN_CLASS Class

	Implementation View
	GOQOLIB
	Fundamental methods of G$_FORM_CLASS
	Pre-form trigger
	Post-form trigger
	Pre-block trigger
	Post-block trigger
	When-new-block-instance trigger
	LOAD_FORM_HEADER trigger
	When-new-record-instance trigger
	KEY-CLRFRM trigger
	KEY-NXTBLK
	KEY-PREVBLK
	KEY-EXIT
	B2K_EXIT_FORM
	KEY-NXTKEY
	Key blocks

	Case view
	Non-inquiry forms without a key block
	Non-inquiry form with a key block
	Inquiry forms with and without a key block
	ID and name items
	Code and description items
	Dates
	Iconic button
	Check box, radio group
	Menu bar options
	Disabling an option
	Enabling an option
	Changing the label text of an option
	Reading the label text of an option

	Standards for forms
	Naming conventions
	Visual cues
	Modification ID
	Instance name
	Guideline
	Helpful hints

	Blocks
	Scroll bars
	Navigation
	Text items
	Check boxes, radio groups, pull down lists
	Check boxes
	Radio groups
	Check boxes/radio group tags
	Pull-down lists

	Buttons
	Button properties
	LOV/LOV buttons

	Menus
	Helpful hints
	Miscellaneous notes

	Create custom Banner forms
	Guidelines for Updating Forms for Banner 8.0
	Create an 8.0 Audit Trail Entry
	Modify the load_current_release trigger
	Check WHEN-NEW-RECORD-INSTANCE
	Add Support for Tooltips
	Observe Standards for Field Lengths

	Online Internal Processing
	Global variables
	General global variables

	How PIDMs and IDs are generated
	Fill gaps in PIDM or ID number series
	The SOBSEQN method used in release 6.x

	Banner libraries
	GOQOLIB
	GOQRPLS
	GOQCLIB
	Workflow Banner Adapter Library (GOQWFLW)

	Oracle Advanced Queuing
	Large Object storage
	Considerations for building custom applications
	Store internal LOBs
	Store BFILEs
	Choose between internal LOBs and BFILEs

	Upgrade Assistance
	Upgrade Modification History/Maintenance (GUASMOD)
	Stage Modification History
	Stage Modification Maintenance Header/Detail
	Header
	Detail

	Stage Modification History Details Window

	Banner Integration
	Common tables
	Common Objects
	Ethnicity codes in Banner
	Ethnic distinctions
	New race and ethnicity categories
	New race code forms

	Nonresident aliens
	Student system
	Human Resources system

	Reports and Processes
	Enhanced Oracle*Reports
	Enhanced Sscurity for Oracle*Reports
	Set up Banner to run the enhanced Oracle*Reports
	Set up default values for parameters 71-77
	Run Custom Oracle Reports with Default Parameters

	User preferences for Oracle Reports output

	Changes to Support Enhanced Oracle Reports
	Student, Finance, and Accounts Receivable Reports
	Parameters 71-77
	7.1 Changes for forms that call Oracle Reports
	Description of changes

	7.1 Changes for Oracle Reports RDF Files
	Description of changes

	General PL/SQL Oracle*Reports Library (GOQOREP)
	Release 7.0 changes
	Release 7.1 changes
	Release 7.3 changes
	The RUN_REPORT_OBJECT
	The optional Report Value Window
	Report Forms Object Library (GOQRLIB)

	Dynamic Procedure Library (GOQRPLS)

	Reports in Banner General
	Perl Reports
	Report and Process Attributes

	Trace mode (debug) for General COBOL programs
	SQL*Plus scripts
	Sleep/wake methods
	Method One
	UNIX
	OpenVMS
	Windows

	Method Two
	Banner Student
	Banner Accounts Receivable

	Print the saved output
	Operating systems without sleep/wake-up commands
	NOSLEEP Triggers
	New database package
	GOKNOSL

	Changed database packages
	GSPCRPU
	GB_ADVQ_UTIL

	Changed Job Submission related database objects
	gjajobs.shl
	Change in the NOSLEEP userid password

	Job Submission
	Jobs submitted from GJAPCTL
	Reset job submission sequence number

	Jobs submitted from application forms
	The GUQINTF form
	UNIX
	gjajobs.shl
	umask value for gjajobs.shl

	Windows platform
	Batch Java scripts
	Job Submission processing
	Looking up the user
	Specifying a home directory
	Using Job Submission

	GURJOBS
	Processing with DBMS_PIPE
	Processing with DBMS_PIPE
	IDLEWAIT timeout configuration modification for GURJOBS.pc

	Manage Job Submission on Windows
	Starting Job Submission for your default database
	Prerequisites

	Starting Job Submission for multiple databases

	Manage Job Submission on VMS
	Starting Job Submission for your default database
	LOGIN.com
	GURJOBS.COM
	START_GURJOBS.COM

	Starting Job Submission for multiple databases

	Manage Job Submission on UNIX
	Starting Job Submission for your default database
	Starting Job Submission for multiple databases

	Manage Job Submission on non-database server
	Typical directory structure
	Executing Banner Pro*C or Pro*Cobol programs

	View Job Submission output
	Manage the printing of saved output using the Banner Print App
	Process PL/SQL packages with JOBSUB
	Example
	Create a job to run a PL/SQL package.procedure thru jobssub

	Data extract process
	Data extract tables
	Purge data extract records with gdeloutd.sql
	Environment variable BAN_DATA_EXTRACT_PAD_COLUMNS

	APIs
	APIs used in Banner General
	APIs used in Banner General with Student forms and tables
	APIs for internal Banner operations

	Interfaces
	Interfaces with external user systems
	GOKSVEX package
	GORSVBH table
	GOTSVBT table
	GURFEED table
	GURAPAY table

	Interfaces within Banner
	GURFEED table
	GURAPAY table

	Generate and Compile Forms
	Mass form generation scripts
	COBOL compiling
	Compile COBOL under UNIX
	Create a Pro*COBOL makefile
	Example buildcob session
	Reduce executable sizes

	Compile COBOL under OpenVMS
	Initial installation

	COBOL Compiling during Banner installation
	Banner product COBOL compile procedures
	UNIX
	OpenVMS
	Windows

	C compiling
	Compile C under UNIX
	Create a Pro*C makefile
	Example buildmk session
	Use sctproc.mk
	Added switch for sctproc.mk file

	Reducie executable sizes

	Compile C under OpenVMS
	Initial installation

	C Compiling during Banner installation
	Banner C compile procedures
	UNIX
	OpenVMS
	Windows

	Desktop Tools
	Desktop Tools overview
	Minimum system requirements
	Desktop Tools configuration
	Unpack Desktop Tools application files
	Update the configuration file
	Distribute files for client PC installation

	Uninstall Desktop Tools configuration
	Client PC installation
	Uninstall Banner Desktop Tools from a client PC

	Installation of Desktop Tools in other environments
	Macintosh
	Citrix

	Forms
	Desktop Tools Add – In Application Form (GOADADD)
	Desktop Tools – Wizard Steps Setup Application Form (GOADSTE)
	Desktop Tools – Step Property Values Rule Form (GORDPRP)
	Desktop Tools – User Security Rule Form (GORDSEC)
	Desktop Tools – Step Type Properties Rule Form (GORDSTP)
	Desktop Tools – Add-In Validation Form (GTVDADD)
	Desktop Tools – Step Property Validation Form (GTVDPRP)
	Desktop Tools – Step Type Validation Form (GTVDSTP)

	Tables

	System-Required Data
	System-Required Tables
	Tables Owned by BANSECR
	Large tables
	Other Tables

	System-Required Rows
	GOBFEOB
	GORCCOL
	GORCRUL
	GORCTAB
	GORSSQL

	Troubleshooting
	SQL Trace
	Start a SQL Trace in GUAINIT
	Capture runtime statistics

